Browse > Article

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells  

Song, Hyun Ju (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Choi, Tai Sik (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Chung, Fa Yong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Ryu, Jung Soo (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Woo, Jae Gwang (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Min, Young Sil (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Shin, Chang Yell (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
Abstract
We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.
Keywords
S1P; esophageal smooth muscle cell; contraction; ERK;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Banno, Y., Fujita, H., Ono, Y., Nakashima, S., Ito, Y., et al. (1999) Differential phospholipase D activation by bradykinin and sphingosine 1-phosphate in NIH 3T3 fibroblasts overexpressing gelsolin. J. Biol. Chem. 274, 27385-27391   DOI
2 Bischoff, A., Czyborra, P., Fetscher, C., Meyer Zu Heringdorf, D., Jakobs, K. H., et al. (2000) Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br. J. Pharmacol. 130, 1871-1877   DOI   ScienceOn
3 Bitar, K. N. and Yamada, H. (1995) Modulation of smooth muscle contraction by sphingosylphosphorylcholine. Am. J. Physiol. 269, G370−377
4 Cao, W., Chen, Q., Sohn, U. D., Kim, N., Kirber, M. T., et al. (2001) $Ca^{2+}$-induced contraction of cat esophageal circular smooth muscle cells. Am. J. Physiol. Cell Physiol. 280, C980-992
5 Graler, M. H., Bernhardt, G., and Lipp, M. (1998) EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53, 164-169   DOI   ScienceOn
6 Hillemeier, A. C., Deutsch, D. E., and Bitar, K. N. (1997) Signal transduction pathways associated with contraction during development of the feline gastric antrum. Gastroenterology 113, 507−513   DOI   ScienceOn
7 Hla, T., Lee, M. J., Ancellin, N., Liu, C. H., Thangada, S., et al. (1999) Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger- Biochem. Pharmacol. 58, 201-207   DOI
8 Ishihata, A., Tasaki, K., and Katano, Y. (2002) Involvement of p44/42 mitogen-activated protein kinases in regulating angiotensin II- and endothelin-1-induced contraction of rat thoracic aorta. Eur. J. Pharmacol. 445, 247−256   DOI
9 Khalil, R. A., Lajoie, C., Resnick, M. S., and Morgan, K. G. (1992) Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am. J. Physiol. 263, C714-719
10 Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900   DOI   ScienceOn
11 Lee, O. H., Lee, D. J., Kim, Y. M., Kim, Y. S., Kwon, H. J., et al. (2000) Sphingosine 1-phosphate stimulates tyrosine phosphorylation of focal adhesion kinase and chemotactic motility of endothelial cells via the G(i) protein-linked phospholipase C pathway. Biochem. Biophys. Res. Commun. 268, 47-53   DOI   ScienceOn
12 Lee, T., Kim, J., and Sohn, U. (2002) Sphingosylphosphorylcholine- induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal. 14, 989-997   DOI   ScienceOn
13 Shin, C. Y., Lee, Y. P., Lee, T. S., Je, H. D., Kim, D. S., et al. (2002a) The signal transduction of endothelin-1-induced circular smooth muscle cell contraction in cat esophagus. J. Pharmacol. Exp. Ther. 302, 924-934   DOI   ScienceOn
14 Van Brocklyn, J., Letterle, C., Snyder, P., and Prior, T. (2002) Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett. 181, 195-204   DOI   ScienceOn
15 Wang, F., Van Brocklyn, J. R., Edsall, L., Nava, V. E., and Spiegel, S. (1999) Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors. Cancer Res. 59, 6185-6191
16 Sato, K., Tomura, H., Igarashi, Y., Ui, M., and Okajima, F. (1999) Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol. Pharmacol. 55, 126-133
17 Wu, J., Spiegel, S., and Sturgill, T. W. (1995) Sphingosine 1- phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J. Biol. Chem. 270, 11484-11488   DOI   ScienceOn
18 Yamada, H., Strahler, J., Welsh, M. J., and Bitar, K. N. (1995) Activation of MAP kinase and translocation with HSP27 in bombesin-induced contraction of rectosigmoid smooth muscle. Am. J. Physiol. 269, G683-691
19 Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., et al. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589   DOI   ScienceOn
20 Kon, J., Sato, K., Watanabe, T., Tomura, H., Kuwabara, A., et al. (1999) Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J. Biol. Chem. 274, 23940-23947   DOI
21 Salomone, S., Yoshimura, S., Reuter, U., Foley, M., Thomas, S. S., et al. (2003) S1P(3) receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur. J. Pharmacol. 469, 125−134   DOI
22 Cain, A. E., Tanner, D. M., and Khalil, R. A. (2002) Endothelin- 1--induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca(2+)](i) sensitization pathways. Hypertension 39, 543-549   DOI   ScienceOn
23 Goetzl, E. J. and An, S. (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589-1598
24 Igarashi, Y. and Yatomi, Y. (1998) Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim. Pol. 45, 299-309
25 An, S., Zheng, Y., and Bleu, T. (2000) Sphingosine 1-phosphateinduced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275, 288-296   DOI   ScienceOn
26 Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., et al. (2000) Characterization of a novel sphingosine 1- phosphate receptor, Edg-8. J. Biol. Chem. 275, 14281-14286   DOI   ScienceOn
27 Yatomi, Y., Igarashi, Y., Yang, L., Hisano, N., Qi, R., et al. (1997a) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J. Biochem. 121, 969-973   DOI   ScienceOn
28 Biancani, P., Hillemeier, C., Bitar, K. N., and Makhlouf, G. M. (1987) Contraction mediated by $Ca^{2+}$ influx in esophageal muscle and by $Ca^{2+}$ release in the LES. Am. J. Physiol. 253, G760−766
29 Okazaki, H., Ishizaka, N., Sakurai, T., Kurokawa, K., Goto, K., et al. (1993) Molecular cloning of a novel putative G proteincoupled receptor expressed in the cardiovascular system. Biochem. Biophys. Res. Commun. 190, 1104−1109   DOI   ScienceOn
30 Van Brocklyn, J. R., Lee, M. J., Menzeleev, R., Olivera, A., Edsall, L., et al. (1998) Dual actions of sphingosine-1- phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell Biol. 142, 229−240   DOI
31 Kim, H. J., Kim, H. J., Lim, S. C., Kim, S. H., and Kim, T. Y. (2003) Induction and apoptosis and expression of cell cycle regulatory proteins in response to a phytosphingosine derivative in HaCaT human keratinocyte cells. Mol. Cells 16, 331−337
32 Cuvillier, O., Rosenthal, D. S., Smulson, M. E., and Spiegel, S. (1998) Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 273, 2910-2916   DOI   ScienceOn
33 Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K. T., Neumann, E., et al. (1998) Sphingosine kinase-mediated $Ca^{2+}$ signalling by G-protein-coupled receptors. EMBO J. 17, 2830-2837   DOI   ScienceOn
34 Shimizu, H., Okajima, F., Kimura, T., Ohtani, K., Tsuchiya, T., et al. (2000) Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. Endocr. J. 47, 261-269   DOI   ScienceOn
35 Fabiato, A. and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. 75, 463−505
36 Horowitz, A., Clement-Chomienne, O., Walsh, M. P., and Morgan, K. G. (1996) Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle. Am. J. Physiol. 271, C589-594
37 Sohn, U. D., Harnett, K. M., Cao, W., Rich, H., Kim, N., et al. (1997a) Acute experimental esophagitis activates a second signal transduction pathway in cat smooth muscle from the lower esophageal sphincter. J. Pharmacol. Exp. Ther. 283, 1293−1304
38 Yamaguchi, F., Tokuda, M., Hatase, O., and Brenner, S. (1996) Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9. Biochem. Biophys. Res. Commun. 227, 608-614   DOI   ScienceOn
39 Morales-Ruiz, M., Lee, M. J., Zollner, S., Gratton, J. P., Scotland, R., et al. (2001) Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/ phosphoinositide 3-kinase pathway in endothelial cells. J. Biol. Chem. 276, 19672-19677   DOI   ScienceOn
40 Sohn, U. D., Han, B., Tashjian, A. H., Jr., Behar, J., and Biancani, P. (1995) Agonist-independent, muscle-type-specific signal transduction pathways in cat esophageal and lower esophageal sphincter circular smooth muscle. J. Pharmacol. Exp. Ther. 273, 482-491
41 Ancellin, N. and Hla, T. (1999) Differential pharmacological properties and signal transduction of the sphingosine 1- phosphate receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274, 18997-19002   DOI
42 Cobb, M. H. and Goldsmith, E. J. (1995) How MAP kinases are regulated. J. Biol. Chem. 270, 14843−14846   DOI   ScienceOn
43 Fegley, A. J., Tanski, W. J., Roztocil, E., and Davies, M. G. (2003) Sphingosine-1-phosphate stimulates smooth muscle cell migration through galpha(i)- and pi3-kinase-dependent p38(MAPK) activation. J. Surg. Res. 113, 32−41   DOI   ScienceOn
44 Payne, D. M., Rossomando, A. J., Martino, P., Erickson, A. K., Her, J. H., et al. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885−892
45 Rosenfeldt, H. M., Amrani, Y., Watterson, K. R., Murthy, K. S., Panettieri, R. A., Jr., et al. (2003) Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 17, 1789-1799   DOI   ScienceOn
46 Zhou, H. and Murthy, K. S. (2004) Distinctive G proteindependent signaling in smooth muscle by sphingosine 1- phosphate receptors S1P1 and S1P2. Am. J. Physiol. Cell Physiol. 286, C1130−1138   DOI
47 Shim, J. O., Shin, C. Y., Lee, T. S., Yang, S. J., An, J. Y., et al. (2002) Signal transduction mechanism via adenosine A1 receptor in the cat esophageal smooth muscle cells. Cell Signal. 14, 365−372   DOI   ScienceOn
48 Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484−496
49 Yatomi, Y., Yamamura, S., Ruan, F., and Igarashi, Y. (1997b) Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J. Biol. Chem. 272, 5291-5297   DOI   ScienceOn
50 Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., et al. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552-1555   DOI
51 Yang, S. J., An, J. Y., Shim, J. O., Park, C. H., Huh, I. H., et al. (2000) The mechanism of contraction by 2-chloroadenosine in cat detrusor muscle cells. J. Urol. 163, 652-658   DOI   ScienceOn
52 Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., et al. (1998) EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, $Ca^{2+}$ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273, 27104-27110   DOI   ScienceOn
53 Shin, C. Y., Lee, Y. P., Lee, T. S., Song, H. J., and Sohn, U. D. (2002b) C(2)-ceramide-induced circular smooth muscle cell contraction involves PKC-epsilon and p44/p42 MAPK activation in cat oesophagus. Mitogen-activated protein kinase. Cell Signal. 14, 925−932   DOI
54 Sohn, U. D., Zoukhri, D., Dartt, D., Sergheraert, C., Harnett, K. M., et al. (1997b) Different protein kinase C isozymes mediate lower esophageal sphincter tone and phasic contraction of esophageal circular smooth muscle. Mol. Pharmacol. 51, 462−470
55 Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., et al. (2003) Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc. Res. 58, 170-177   DOI   ScienceOn
56 Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557-560   DOI   ScienceOn
57 Pyne, S., Chapman, J., Steele, L., and Pyne, N. J. (1996) Sphingomyelin- derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur. J. Biochem. 237, 819-826   DOI   ScienceOn
58 Windh, R. T., Lee, M. J., Hla, T., An, S., Barr, A. J., et al. (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J. Biol. Chem. 274, 27351-27358   DOI