Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13816

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes  

Lee, Seung Eun (Stem Cell Research Center, Jeju National University)
Kim, Eun Young (Stem Cell Research Center, Jeju National University)
Choi, Hyun Yong (Stem Cell Research Center, Jeju National University)
Moon, Jeremiah Jiman (Stem Cell Research Center, Jeju National University)
Park, Min Jee (Stem Cell Research Center, Jeju National University)
Lee, Jun Beom (Shin Woman's Hospital)
Jeong, Chang Jin (Shin Woman's Hospital)
Park, Se Pill (Stem Cell Research Center, Jeju National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.5, 2014 , pp. 635-647 More about this Journal
Abstract
Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.
Keywords
Porcine Oocyte; Age; Rapamycin; Reactive Oxygen Species (ROS); Mammalian Target of Rapamycin (mTOR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pellestor, F., B. Andreo, F. Arnal, C. Humeau, and J. Demaille. 2003. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum. Genet. 112:195-203.
2 Sun, Q. Y., G. M. Wu, L. Lai, A. Bonk, R. Cabot, K. W. Park, B. N. Day, R. S. Prather, and H. Schatten. 2002. Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol. Reprod. 66:580-588.   DOI   ScienceOn
3 Shigenaga, M. K., T. M. Hagen, and B. N. Ames. 1994. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America 91:10771-10778.   DOI   ScienceOn
4 Somfai, T., K. Kikuchi, M. Kaneda, S. Akagi, S. Watanabe, E. Mizutani, S. Haraguchi, T. Q. Dang-Nguyen, Y. Inaba, M. Geshi, and T. Nagai. 2011. Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation. Anat. Histol. Ebryol. 40:335-344.   DOI   ScienceOn
5 Steuerwald, N. M., M. D. Steuerwald, and J. B. Mailhes. 2005. Post-ovulatory aging of mouse oocytes leads to decreased MAD2 transcripts and increased frequencies of premature centromere separation and anaphase. Mol. Hum. Reprod. 11:623-630.   DOI   ScienceOn
6 Tarin, J.J. 1996. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol. Hum. Reprod. 2:717-724.   DOI   ScienceOn
7 Toth, M. L., T. Sigmond, E. Borsos, J. Barna, P. Erdelyi, K. Takacs-Vellai, L. Orosz, A. L. Kovacs, G. Csikos, M. Sass, and T. Vellai. 2008. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330-338.   DOI   ScienceOn
8 Tripathi, A., S. Khatun, A. N. Pandey, S. K. Mishra, R. Chaube, T. G. Shrivastav, and S. K. Chaube. 2009. Intracellular levels of hydrogen peroxide and nitric oxide in oocytes at various stages of meiotic cell cycle and apoptosis. Free Radic. Res. 43(3):287-294.   DOI   ScienceOn
9 Vellai, T., K. Takacs-Vellai, Y. Zhang, A. L. Kovacs, L. Orosz, and F. Muller. 2003. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620.
10 Blagosklonny, M. V. 2008. Aging: ROS or TOR. Cell Cycle 7(21):3344-3354.   DOI   ScienceOn
11 Wullschleger, S., R. Loewith, and M.N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.   DOI   ScienceOn
12 Agarwal, A., S. Gupta, and R. Sharma. 2005. Oxidative stress and its implications in female infertility - A clinician's perspective. Reprod. Biomed. Online 11(5):641-650.   DOI   ScienceOn
13 Xu, Z., A. Abbott, G. S. Kopf, R. M. Schultz, and T. Ducibella. 1997. Spontaneous activation of ovulated mouse eggs: time-dependent effects on M-phase exit, cortical granule exocytosis, maternal messenger ribonucleic acid recruitment, and inositol 1,4,5-trisphosphate sensitivity. Biol. Reprod. 57:743-750.   DOI   ScienceOn
14 Bjedov, I., J. M. Toivonen, F. Kerr, C. Slack, J. Jacobson, A. Foley, and L. Partridge. 2010. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11:35-46.   DOI   ScienceOn
15 Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655.   DOI   ScienceOn
16 Dodson, M. G., B. S. Minhas, S. K. Curtis, T. V. Palmer, and J. L. Robertson. 1989. Spontaneous zona reaction in the mouse as a limiting factor for the time in which an oocyte may be fertilized. J. In Vitro Fert. Embryo Transf. 6:101-106.   DOI
17 Dumont, F. J., M. J. Staruch, S. L. Koprak, M. R. Melino, and N. H. Sigal. 1990. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144:251-258.
18 Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11:298-300.   DOI   ScienceOn
19 George, M. A., S. J. Pickering, P. R. Braude, and M. H. Johnson. 1996. The distribution of alpha- and gamma-tubulin in fresh and aged human and mouse oocytes exposed to cryoprotectant. Mol. Hum. Reprod. 2:445-456.   DOI   ScienceOn
20 Guertin, D. A. and D. M. Sabatini. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22.   DOI   ScienceOn
21 Gupta, M. K., S. J. Uhm, and H. T. Lee. 2010. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil. Steril. 93:2602-2607.   DOI   ScienceOn
22 Harris, T. E. and J. C. JrLawrence. 2003. TOR signaling. Science's STKE: signal transduction knowledge environment 2003(212):re15.
23 Jacinto, E. and M. N. Hall. 2003. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol. 4:117-126.   DOI   ScienceOn
24 Kaeberlein, M., R. W. 3rd Powers, K. K. Steffen, E. A. Westman, D. Hu, N. Dang, E. O. Kerr, K. T. Kirkland, S. Fields, and B. K. Kennedy. 2005. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193-1196.   DOI   ScienceOn
25 Kapahi, P., B. M. Zid, T. Harper, D. Koslover, V. Sapin, and S. Benzer. 2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14:885-890.   DOI   ScienceOn
26 Kenyon, C. J. 2010. The genetics of ageing. Nature 464:504-512.   DOI   ScienceOn
27 Lee, S. E., J. H. Kim, and N. H. Kim. 2007. Inactivation of MAPK affects centrosome assembly, but not actin filament assembly, in mouse oocytes maturing in vitro. Mol. Reprod. Dev. 74:904-911.   DOI   ScienceOn
28 Khurana, N.K. and H. Niemann. 2000. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biology of reproduction 62(4):847-856.   DOI   ScienceOn
29 Lee, S. E., K. C. Hwang, S. C. Sun, Y. N. Xu, and N. H. Kim. 2011. Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev. 78:498-509.   DOI   ScienceOn
30 Kikuchi, K., K. Naito, J. Noguchi, A. Shimada, H. Kaneko, M. Yamashita, F. Aoki, H. Tojo, and Y. Toyoda. 2000. Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol. Reprod. 63:715-722.   DOI   ScienceOn
31 Lee, S. E., S. C. Sun, H. Y. Choi, S. J. Uhm, and N. H. Kim. 2012. mTOR is required for asymmetric division through small GTPases in mouse oocytes. Mol. Reprod. Dev. 79:356-366.   DOI   ScienceOn
32 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-^{\Delta{\Delta}CT}$ method. Methods 25:402-408.   DOI   ScienceOn
33 Luo, S. and D. C. Rubinsztein. 2007. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 14:1247-1250.   DOI   ScienceOn
34 Ma, W., D. Zhang, Y. Hou, Y. H. Li, Q.Y. Sun, X. F. Sun, and W. H. Wang. 2005. Reduced expression of MAD2, BCL2, and MAP kinase activity in pig oocytes after in vitro aging are associated with defects in sister chromatid segregation during meiosis II and embryo fragmentation after activation. Biol. Reprod. 72:373-383.   DOI   ScienceOn
35 Mammucari, C. and R. Rizzuto. 2010. Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 131:536-543.   DOI   ScienceOn
36 Miao, Y. L., K. Kikuchi, Q. Y. Sun, and H. Schatten. 2009. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Human Reprod. Update 15:573-585.   DOI   ScienceOn
37 Baird, D. T., J. Collins, J. Egozcue, L. H. Evers, L. Gianaroli, H. Leridon, A. Sunde, A. Templeton, A. Van Steirteghem, J. Cohen, P. G. Crosignani, P. Devroey, K. Diedrich, B. C. Fauser, L. Fraser, A. Glasier, I. Liebaers, G. Mautone, G. Penney, and B. Tarlatzis. 2005. Fertility and ageing. Hum. Reprod. Update 11(3):261-276.   DOI   ScienceOn
38 Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631-642.   DOI   ScienceOn
39 Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer, and A. Smith. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391.   DOI   ScienceOn
40 Ono, T., E. Mizutani, C. Li, K. Yamagata, and T. Wakayama. 2011. Offspring from intracytoplasmic sperm injection of aged mouse oocytes treated with caffeine or MG132. Genesis 49:460-471.   DOI   ScienceOn
41 Harrison, D. E., R. Strong, Z. D. Sharp, J. F. Nelson, C. M. Astle, K. Flurkey, N. L. Nadon, J. E. Wilkinson, K. Frenkel, C. S. Carter, M. Pahor, M. A. Javors, E. Fernandez, and R. A. Miller. 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392-395.