Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Choi, Tai Sik (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Chung, Fa Yong (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Ryu, Jung Soo (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Woo, Jae Gwang (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Min, Young Sil (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Shin, Chang Yell (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
  • Received : 2005.08.03
  • Accepted : 2005.10.17
  • Published : 2006.02.28

Abstract

We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. An, S., Zheng, Y., and Bleu, T. (2000) Sphingosine 1-phosphateinduced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275, 288-296 https://doi.org/10.1074/jbc.275.1.288
  2. Ancellin, N. and Hla, T. (1999) Differential pharmacological properties and signal transduction of the sphingosine 1- phosphate receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274, 18997-19002 https://doi.org/10.1074/jbc.274.27.18997
  3. Banno, Y., Fujita, H., Ono, Y., Nakashima, S., Ito, Y., et al. (1999) Differential phospholipase D activation by bradykinin and sphingosine 1-phosphate in NIH 3T3 fibroblasts overexpressing gelsolin. J. Biol. Chem. 274, 27385-27391 https://doi.org/10.1074/jbc.274.39.27385
  4. Biancani, P., Hillemeier, C., Bitar, K. N., and Makhlouf, G. M. (1987) Contraction mediated by $Ca^{2+}$ influx in esophageal muscle and by $Ca^{2+}$ release in the LES. Am. J. Physiol. 253, G760−766
  5. Bischoff, A., Czyborra, P., Fetscher, C., Meyer Zu Heringdorf, D., Jakobs, K. H., et al. (2000) Sphingosine-1-phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br. J. Pharmacol. 130, 1871-1877 https://doi.org/10.1038/sj.bjp.0703515
  6. Bitar, K. N. and Yamada, H. (1995) Modulation of smooth muscle contraction by sphingosylphosphorylcholine. Am. J. Physiol. 269, G370−377
  7. Cain, A. E., Tanner, D. M., and Khalil, R. A. (2002) Endothelin- 1--induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca(2+)](i) sensitization pathways. Hypertension 39, 543-549 https://doi.org/10.1161/hy0202.103129
  8. Cao, W., Chen, Q., Sohn, U. D., Kim, N., Kirber, M. T., et al. (2001) $Ca^{2+}$-induced contraction of cat esophageal circular smooth muscle cells. Am. J. Physiol. Cell Physiol. 280, C980-992
  9. Cobb, M. H. and Goldsmith, E. J. (1995) How MAP kinases are regulated. J. Biol. Chem. 270, 14843−14846 https://doi.org/10.1074/jbc.270.25.14843
  10. Cuvillier, O., Rosenthal, D. S., Smulson, M. E., and Spiegel, S. (1998) Sphingosine 1-phosphate inhibits activation of caspases that cleave poly(ADP-ribose) polymerase and lamins during Fas- and ceramide-mediated apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 273, 2910-2916 https://doi.org/10.1074/jbc.273.5.2910
  11. Fabiato, A. and Fabiato, F. (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. 75, 463−505
  12. Fegley, A. J., Tanski, W. J., Roztocil, E., and Davies, M. G. (2003) Sphingosine-1-phosphate stimulates smooth muscle cell migration through galpha(i)- and pi3-kinase-dependent p38(MAPK) activation. J. Surg. Res. 113, 32−41 https://doi.org/10.1016/S0022-4804(03)00120-3
  13. Goetzl, E. J. and An, S. (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589-1598
  14. Graler, M. H., Bernhardt, G., and Lipp, M. (1998) EDG6, a novel G-protein-coupled receptor related to receptors for bioactive lysophospholipids, is specifically expressed in lymphoid tissue. Genomics 53, 164-169 https://doi.org/10.1006/geno.1998.5491
  15. Hillemeier, A. C., Deutsch, D. E., and Bitar, K. N. (1997) Signal transduction pathways associated with contraction during development of the feline gastric antrum. Gastroenterology 113, 507−513 https://doi.org/10.1053/gast.1997.v113.pm9247470
  16. Hla, T., Lee, M. J., Ancellin, N., Liu, C. H., Thangada, S., et al. (1999) Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger- Biochem. Pharmacol. 58, 201-207 https://doi.org/10.1016/S0006-2952(99)00086-6
  17. Horowitz, A., Clement-Chomienne, O., Walsh, M. P., and Morgan, K. G. (1996) Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle. Am. J. Physiol. 271, C589-594
  18. Igarashi, Y. and Yatomi, Y. (1998) Sphingosine 1-phosphate is a blood constituent released from activated platelets, possibly playing a variety of physiological and pathophysiological roles. Acta Biochim. Pol. 45, 299-309
  19. Im, D. S., Heise, C. E., Ancellin, N., O'Dowd, B. F., Shei, G. J., et al. (2000) Characterization of a novel sphingosine 1- phosphate receptor, Edg-8. J. Biol. Chem. 275, 14281-14286 https://doi.org/10.1074/jbc.275.19.14281
  20. Ishihata, A., Tasaki, K., and Katano, Y. (2002) Involvement of p44/42 mitogen-activated protein kinases in regulating angiotensin II- and endothelin-1-induced contraction of rat thoracic aorta. Eur. J. Pharmacol. 445, 247−256 https://doi.org/10.1016/S0014-2999(02)01790-9
  21. Khalil, R. A., Lajoie, C., Resnick, M. S., and Morgan, K. G. (1992) Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am. J. Physiol. 263, C714-719
  22. Kim, H. J., Kim, H. J., Lim, S. C., Kim, S. H., and Kim, T. Y. (2003) Induction and apoptosis and expression of cell cycle regulatory proteins in response to a phytosphingosine derivative in HaCaT human keratinocyte cells. Mol. Cells 16, 331−337
  23. Kitazawa, T., Eto, M., Woodsome, T. P., and Brautigan, D. L. (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275, 9897-9900 https://doi.org/10.1074/jbc.275.14.9897
  24. Kon, J., Sato, K., Watanabe, T., Tomura, H., Kuwabara, A., et al. (1999) Comparison of intrinsic activities of the putative sphingosine 1-phosphate receptor subtypes to regulate several signaling pathways in their cDNA-transfected Chinese hamster ovary cells. J. Biol. Chem. 274, 23940-23947 https://doi.org/10.1074/jbc.274.34.23940
  25. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., et al. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552-1555 https://doi.org/10.1126/science.279.5356.1552
  26. Lee, O. H., Lee, D. J., Kim, Y. M., Kim, Y. S., Kwon, H. J., et al. (2000) Sphingosine 1-phosphate stimulates tyrosine phosphorylation of focal adhesion kinase and chemotactic motility of endothelial cells via the G(i) protein-linked phospholipase C pathway. Biochem. Biophys. Res. Commun. 268, 47-53 https://doi.org/10.1006/bbrc.2000.2087
  27. Lee, T., Kim, J., and Sohn, U. (2002) Sphingosylphosphorylcholine- induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal. 14, 989-997 https://doi.org/10.1016/S0898-6568(02)00032-3
  28. Meyer zu Heringdorf, D., Lass, H., Alemany, R., Laser, K. T., Neumann, E., et al. (1998) Sphingosine kinase-mediated $Ca^{2+}$ signalling by G-protein-coupled receptors. EMBO J. 17, 2830-2837 https://doi.org/10.1093/emboj/17.10.2830
  29. Morales-Ruiz, M., Lee, M. J., Zollner, S., Gratton, J. P., Scotland, R., et al. (2001) Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/ phosphoinositide 3-kinase pathway in endothelial cells. J. Biol. Chem. 276, 19672-19677 https://doi.org/10.1074/jbc.M009993200
  30. Nishizuka, Y. (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484−496
  31. Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., et al. (2003) Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc. Res. 58, 170-177 https://doi.org/10.1016/S0008-6363(03)00260-8
  32. Okamoto, H., Takuwa, N., Gonda, K., Okazaki, H., Chang, K., et al. (1998) EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, $Ca^{2+}$ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J. Biol. Chem. 273, 27104-27110 https://doi.org/10.1074/jbc.273.42.27104
  33. Okazaki, H., Ishizaka, N., Sakurai, T., Kurokawa, K., Goto, K., et al. (1993) Molecular cloning of a novel putative G proteincoupled receptor expressed in the cardiovascular system. Biochem. Biophys. Res. Commun. 190, 1104−1109 https://doi.org/10.1006/bbrc.1993.1163
  34. Olivera, A. and Spiegel, S. (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365, 557-560 https://doi.org/10.1038/365557a0
  35. Payne, D. M., Rossomando, A. J., Martino, P., Erickson, A. K., Her, J. H., et al. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885−892
  36. Pyne, S., Chapman, J., Steele, L., and Pyne, N. J. (1996) Sphingomyelin- derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur. J. Biochem. 237, 819-826 https://doi.org/10.1111/j.1432-1033.1996.0819p.x
  37. Rosenfeldt, H. M., Amrani, Y., Watterson, K. R., Murthy, K. S., Panettieri, R. A., Jr., et al. (2003) Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 17, 1789-1799 https://doi.org/10.1096/fj.02-0836com
  38. Salomone, S., Yoshimura, S., Reuter, U., Foley, M., Thomas, S. S., et al. (2003) S1P(3) receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur. J. Pharmacol. 469, 125−134 https://doi.org/10.1016/S0014-2999(03)01731-X
  39. Sato, K., Tomura, H., Igarashi, Y., Ui, M., and Okajima, F. (1999) Possible involvement of cell surface receptors in sphingosine 1-phosphate-induced activation of extracellular signal-regulated kinase in C6 glioma cells. Mol. Pharmacol. 55, 126-133
  40. Shim, J. O., Shin, C. Y., Lee, T. S., Yang, S. J., An, J. Y., et al. (2002) Signal transduction mechanism via adenosine A1 receptor in the cat esophageal smooth muscle cells. Cell Signal. 14, 365−372 https://doi.org/10.1016/S0898-6568(01)00270-4
  41. Shimizu, H., Okajima, F., Kimura, T., Ohtani, K., Tsuchiya, T., et al. (2000) Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. Endocr. J. 47, 261-269 https://doi.org/10.1507/endocrj.47.261
  42. Shin, C. Y., Lee, Y. P., Lee, T. S., Je, H. D., Kim, D. S., et al. (2002a) The signal transduction of endothelin-1-induced circular smooth muscle cell contraction in cat esophagus. J. Pharmacol. Exp. Ther. 302, 924-934 https://doi.org/10.1124/jpet.302.3.924
  43. Shin, C. Y., Lee, Y. P., Lee, T. S., Song, H. J., and Sohn, U. D. (2002b) C(2)-ceramide-induced circular smooth muscle cell contraction involves PKC-epsilon and p44/p42 MAPK activation in cat oesophagus. Mitogen-activated protein kinase. Cell Signal. 14, 925−932 https://doi.org/10.1016/S0898-6568(02)00038-4
  44. Sohn, U. D., Han, B., Tashjian, A. H., Jr., Behar, J., and Biancani, P. (1995) Agonist-independent, muscle-type-specific signal transduction pathways in cat esophageal and lower esophageal sphincter circular smooth muscle. J. Pharmacol. Exp. Ther. 273, 482-491
  45. Sohn, U. D., Harnett, K. M., Cao, W., Rich, H., Kim, N., et al. (1997a) Acute experimental esophagitis activates a second signal transduction pathway in cat smooth muscle from the lower esophageal sphincter. J. Pharmacol. Exp. Ther. 283, 1293−1304
  46. Sohn, U. D., Zoukhri, D., Dartt, D., Sergheraert, C., Harnett, K. M., et al. (1997b) Different protein kinase C isozymes mediate lower esophageal sphincter tone and phasic contraction of esophageal circular smooth muscle. Mol. Pharmacol. 51, 462−470
  47. Van Brocklyn, J. R., Lee, M. J., Menzeleev, R., Olivera, A., Edsall, L., et al. (1998) Dual actions of sphingosine-1- phosphate: extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J. Cell Biol. 142, 229−240 https://doi.org/10.1083/jcb.142.1.229
  48. Van Brocklyn, J., Letterle, C., Snyder, P., and Prior, T. (2002) Sphingosine-1-phosphate stimulates human glioma cell proliferation through Gi-coupled receptors: role of ERK MAP kinase and phosphatidylinositol 3-kinase beta. Cancer Lett. 181, 195-204 https://doi.org/10.1016/S0304-3835(02)00050-2
  49. Wang, F., Van Brocklyn, J. R., Edsall, L., Nava, V. E., and Spiegel, S. (1999) Sphingosine-1-phosphate inhibits motility of human breast cancer cells independently of cell surface receptors. Cancer Res. 59, 6185-6191
  50. Windh, R. T., Lee, M. J., Hla, T., An, S., Barr, A. J., et al. (1999) Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J. Biol. Chem. 274, 27351-27358 https://doi.org/10.1074/jbc.274.39.27351
  51. Wu, J., Spiegel, S., and Sturgill, T. W. (1995) Sphingosine 1- phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J. Biol. Chem. 270, 11484-11488 https://doi.org/10.1074/jbc.270.19.11484
  52. Yamada, H., Strahler, J., Welsh, M. J., and Bitar, K. N. (1995) Activation of MAP kinase and translocation with HSP27 in bombesin-induced contraction of rectosigmoid smooth muscle. Am. J. Physiol. 269, G683-691
  53. Yamaguchi, F., Tokuda, M., Hatase, O., and Brenner, S. (1996) Molecular cloning of the novel human G protein-coupled receptor (GPCR) gene mapped on chromosome 9. Biochem. Biophys. Res. Commun. 227, 608-614 https://doi.org/10.1006/bbrc.1996.1553
  54. Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., et al. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589 https://doi.org/10.1006/bbrc.2000.2162
  55. Yang, S. J., An, J. Y., Shim, J. O., Park, C. H., Huh, I. H., et al. (2000) The mechanism of contraction by 2-chloroadenosine in cat detrusor muscle cells. J. Urol. 163, 652-658 https://doi.org/10.1016/S0022-5347(05)67952-9
  56. Yatomi, Y., Igarashi, Y., Yang, L., Hisano, N., Qi, R., et al. (1997a) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J. Biochem. 121, 969-973 https://doi.org/10.1093/oxfordjournals.jbchem.a021681
  57. Yatomi, Y., Yamamura, S., Ruan, F., and Igarashi, Y. (1997b) Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid. J. Biol. Chem. 272, 5291-5297 https://doi.org/10.1074/jbc.272.8.5291
  58. Zhou, H. and Murthy, K. S. (2004) Distinctive G proteindependent signaling in smooth muscle by sphingosine 1- phosphate receptors S1P1 and S1P2. Am. J. Physiol. Cell Physiol. 286, C1130−1138 https://doi.org/10.1152/ajpcell.00429.2003