• 제목/요약/키워드: p-version of FEM

검색결과 11건 처리시간 0.023초

p-Version 유한요소법에 의한 형상 최적화설계 (Shape Optimal Design by P-version of Finite Element Method)

  • 김행준;우광성
    • 대한토목학회논문집
    • /
    • 제14권4호
    • /
    • pp.729-740
    • /
    • 1994
  • h-version 유한요소법에 근거를 둔 형상최적화 설계에서는 초기모델의 기하형상에 대한 이상적인 체눈설계가 최종해석시에는 적합하지 않을 수 있게 된다. 그러므로, 최적화의 반복단계마다 모델의 단변형상에 대한 새로운 체눈설계가 필요하게 된다. 그러나 p-version 유한요소법은 형상최적화 문제 해석을 위한 매우 매력적인 대안으로 제시될 수 있다 p-version 유한요소법은 h-version 유한요소법과 비교하여 다음과 같은 큰 장점을 갖고 있다. 첫째로, 보간함수의 차수가 3차이상이 되면 요소의 찌그러진 형상에 대한 유한요소 해에 별 영향을 미치지 않는다. 둘째로, 심지어 응력특이 문제도 h-version에 비해 p-version은 적절한 체눈설계를 하게되면 훨씬 효율적이다. 셋째로, 초지 체눈설계와 최종 체눈설계가 동일하므로 반복단계마다 새롭게 체눈설계를 할 필요가 없어진다. Bezier의 곡선보간법, 경사투사법과 적분형 르장드르 다항식에 기초를 둔 2차원 형상최적화를 위한 p-version 모델이 제시되었다. 수치해석 경과는 p-version 소프트웨어인 RASNA를 사용하여 수행되었다.

  • PDF

P-version 균열모델에 의한 J-적분해석 (J-integral Analysis by P-version Crack Model)

  • 이채규;우광성;윤영필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.38-45
    • /
    • 1994
  • P-version finite element model for the computation of stress intensity factors in two dimensional cracked panels by J-integral method is presented. The proposed model is based on high order theory and hierarchical shape function. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three part such as basic mode, side mode, integral mode. The stress intensity factors are computed by J-integral method. The example models for validating the proposed p-version model are centrally cracked panel, single and double edged crack in a rectangular panel under pure Mode I. And the analysis results are compared with those by the h-version of FEM and empirical solutions in literatures. Very good agreement with the existing solution are shown.

  • PDF

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

P-Version 유한요소법에 의한 피로 균열 해석 (Fatigue Crack Propagation Analysis by P-version of Finite Element Method)

  • 우광성;이채규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1992
  • Since many design problems in the railroad, aerospace and machine structures involve considerations of the effect of cyclic loading, manufacturing and quality control processes must fully account for fatigue of critical components. Due to the sensitivity of the Paris law, it is very important to calculate the ΔK numerically to minimize the error of predicted fatigue life in cycles. It is shown that the p-version of FEM based on LEFM analysis is far better suited for computing the stress intensity factors than the conventional h-version. To demonstrate the proficiency of the proposed scheme, the welded T-joint with crack problem of box car body bolster assembly and a crack problem emanating Iron a circular hole in finite strip have been solved.

  • PDF

P-version 유한요소법에 의한 피로균열해석 (Fatigue Crack Propagation Analysis by P-Version of Finite Element Method)

  • 우광성;이채규
    • 전산구조공학
    • /
    • 제5권3호
    • /
    • pp.97-103
    • /
    • 1992
  • 철도, 항공 및 기계구조물등의 많은 설계문제에서는 반복하중의 영향을 받기 때문에 제조와 품질제어 공정에서 특히, 반복하중의 영향이 심한 구조부품의 피로균열에 대한 연구가 충분히 선행되어야 한다. Paris법칙에서 응력확대계수범위 .DELTA.K에 10%오차를 수반하면 피로수명 N에는 50%정도의 오차를 초래할 만큼 민감도가 매우 크다. 그러나, 선형탄성파괴역학에 근거한 p-version 유한요소법은 응력확대계수를 산정하는데 있어서 종래의 h-version 유한요소법에 비해 훨씬 적합함이 증명되고 있다. 제안된 해석법의 효율성을 입증하기 위해 철도차량의 연결접합부에 있는 T-joint부위의 피로균열해석과 원공이 있는 유한판의 원공주위에서 발생되는 균열해석이 수행되었다.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method

  • Hakim Bentrar;Sidi Mohammed Chorfi;Sid Ahmed Belalia;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.551-567
    • /
    • 2023
  • In this work, the free vibration analysis of functionally graded material (FGM) sandwich plates with porosity is conducted using the p-version of the finite element method (FEM), which is based on the first-order shear deformation theory (FSDT). The sandwich plate consists of two face-sheet layers of FGM and a homogeneous core layer. The obtained results are validated using convergence and comparison studies with previously published results. Five porosities distribution models of FGM sandwich plates are assumed and analyzed. The effect of the thickness ratio, boundary conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on the natural frequency are addressed.

INVESTIGATION OF THE ERROR DUE TO THE PRESENCE OF THE MAPPED ELEMENT

  • Yang, Young-Kyun;Kim, Chang-Geun
    • Korean Journal of Mathematics
    • /
    • 제10권2호
    • /
    • pp.179-190
    • /
    • 2002
  • We analyze the error in the $p$ version of the of the finite element method when the effect of the quadrature error is taken into account. We investigate source of quadrature error due to the presence of mapped elements. We present theoretical and computational examples regarding the sharpness of our results.

  • PDF

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.