DOI QR코드

DOI QR Code

Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method

  • Hakim Bentrar (Laboratory of Computational Mechanics, Department of Mechanical Engineering, Faculty of Technology, University of Tlemcen) ;
  • Sidi Mohammed Chorfi (Laboratory of Computational Mechanics, Department of Mechanical Engineering, Faculty of Technology, University of Tlemcen) ;
  • Sid Ahmed Belalia (Laboratory of Computational Mechanics, Department of Mechanical Engineering, Faculty of Technology, University of Tlemcen) ;
  • Abdelouahed Tounsi (Center for Engineering Application & Technology Solutions, Ho Chi Minh City Open University) ;
  • Mofareh Hassan Ghazwani (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Ali Alnujaie (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2023.03.27
  • Accepted : 2023.11.29
  • Published : 2023.12.25

Abstract

In this work, the free vibration analysis of functionally graded material (FGM) sandwich plates with porosity is conducted using the p-version of the finite element method (FEM), which is based on the first-order shear deformation theory (FSDT). The sandwich plate consists of two face-sheet layers of FGM and a homogeneous core layer. The obtained results are validated using convergence and comparison studies with previously published results. Five porosities distribution models of FGM sandwich plates are assumed and analyzed. The effect of the thickness ratio, boundary conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on the natural frequency are addressed.

Keywords

Acknowledgement

The Authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number: ISP23-69.

References

  1. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705. https://doi.org/10.12989/sem.2022.81.6.705.
  2. Belalia, S.A. (2019a), "A new analysis of nonlinear free vibration behavior of bi-functionally graded sandwich plates using the p-version of the finite element method", Mech. Adv. Mater. Struct., 26(8), 727-740. https://doi.org/10.1080/15376494.2017.1410912.
  3. Belalia, S.A. (2019b), "A curved hierarchical finite element method for the nonlinear vibration analysis of functionally graded sandwich elliptic plates", Mech. Adv. Mater. Struct., 26(13), 1115-1129. https://doi.org/10.1080/15376494.2018.1430277.
  4. Belalia, S.A. (2019c), "Investigation of the mechanical properties on the large amplitude free vibrations of the functionally graded material sandwich plates", J. Sandw. Struct. Mater., 21(3), 895-916. https://doi.org/10.1177/1099636217701299.
  5. Bendahmane, A., Hamza-Cherif, S.M. and Ouissi, M.N. (2021), "Free vibration analysis of Variable Stiffness Composite Laminate (VSCL) plates coupled with fluid", Mech. Adv. Mater. Struct., 28(2), 167-181. https://doi.org/10.1080/15376494.2018.1553257.
  6. Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55(4), 815-832. https://doi.org/10.1007/s11012-019-01001-7.
  7. Daikh, A.A. and Zenkour, A.M. (2019a), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Expr., 6(6), 065703. https://doi.org/10.1088/2053-1591/ab0971.
  8. Daikh, A.A. and Zenkour, A.M. (2019b), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Expr., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.
  9. Dat, P.T. and Luat, D.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Vietnam J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
  10. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  11. Hadji, L., Fallah, A. and Aghdam, M.M. (2022), "Influence of the distribution pattern of porosity on the free vibration of functionally graded plates", Struct. Eng. Mech., 82(2), 151. https://doi.org/10.12989/sem.2022.82.2.151.
  12. Heshmati, M. and Jalali, S.K. (2019), "Effect of radially graded porosity on the free vibration behavior of circular and annular sandwich plates", Eur. J. Mech., A/Solid., 74, 417-430. https://doi.org/10.1016/j.euromechsol.2018.12.009.
  13. Irfan, S. and Siddiqui, F. (2019), "A review of recent advancements in finite element formulation for sandwich plates", Chin. J. Aeronaut., 32(4), 785-798. https://doi.org/10.1016/j.cja.2018.11.011.
  14. Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
  15. Malik, M. and Bert, C.W. (1998), "Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method", Int. J. Solid. Struct., 35(3-4), 299-318. https://doi.org/10.1016/S0020-7683(97)00073-5.
  16. Quan, T.Q. and Duc, N.D. (2022), "Analytical solutions for nonlinear vibration of porous functionally graded sandwich plate subjected to blast loading", Thin Wall. Struct., 170, 108606. https://doi.org/10.1016/j.tws.2021.108606.
  17. Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
  18. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates-A critical review of various modeling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047.
  19. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070.
  20. Szilard, R. (2004), Theories and Applications of Plate Analysis, JohnWiley & Sons Inc., Hoboken, New Jersey,
  21. Tran, T.T., Pham, Q.H. and Nguyen-Thoi, T. (2021), "Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method", Defence Technol., 17(3), 971-986. https://doi.org/10.1016/j.dt.2020.06.001.
  22. Van Vinh, P. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
  23. Wang, Y. (2023a), "Adaptive mesh refinement for finite element analysis of elastic buckling disturbance of circularly curved beams due to multiple micro-cracks damage", Eng. Comput., 40(1), 191-209. https://doi.org/10.1108/EC-01-2022-0016.
  24. Wang, Y. (2023b), "Mesh refinement of finite element method for free vibration analysis of variable geometrical rotating cylindrical shells", Eng. Comput., 40(1), 210-228. https://doi.org/10.1108/EC-02-2022-0082.
  25. Wang, Y. and Wang, J. (2022), "An Hp-version adaptive finite element algorithm for eigensolutions of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation", Eng. Comput., 39(5), 1874-1901. https://doi.org/10.1108/EC-07-2021-0430.
  26. Wang, Y., Hu, J., Kennedy, D., Wang, J. and Wu, J. (2022), "Adaptive mesh refinement for finite element analysis of the free vibration disturbance of cylindrical shells due to circumferential micro-crack damage", Eng. Comput., 39(9), 3271-3295. https://doi.org/10.1108/EC-09-2021-0555.
  27. Yaylaci, M., Adiyaman, G., OEner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325. https://doi.org/10.12989/sem.2020.76.3.325.
  28. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42(18-19). 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  29. Zhang, J., Yang, W., Chen, J. and Xu, R. (2021), "Direct evaluation of the stress intensity factors for the single and multiple crack problems using the P-version finite element method and contour integral method", Appl. Sci., 11(17), 8111. https://doi.org/10.3390/app11178111.
  30. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.