
Kangweon-Kyungki Math. Jour. 10 (2002), No. 2, pp. 179–190

INVESTIGATION OF THE ERROR DUE TO THE

PRESENCE OF THE MAPPED ELEMENT

Young-Kyun Yang and Chang-Geun Kim

Abstract. We analyze the error in the p version of the of the finite
element method when the effect of the quadrature error is taken into
account. We investigate source of quadrature error due to the pres-
ence of mapped elements. We present theoretical and computational
examples regarding the sharpness of our results.

1. Introduction

Let Ω be a polygonal domain in R2, or a line segment in R1, and
consider the following model problem on Ω,

Lu = −div (a∇u) = f in Ω ⊂ R2,(1.1)

Lu = − d

dx

(
a

du

dx

)
= f in Ω ⊂ R1,(1.2)

with one of the following boundary conditions

u = 0 on Γ,(1.3)

∂u

∂n
= g on Γ.(1.4)

Here, ∇ is the gradient operator and n denotes the unit outward normal
to Γ defined almost everywhere on Γ. For the case of (1.4), we assume
f , g satisfy a compatibility condition to ensure existence of a solution.

Now we define Sobolev spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : Diu ∈ Lp(Ω), 0 ≤ |i| ≤ m},
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equipped with norm

‖u‖p
m,p,Ω =

∑

0≤|i|≤m

‖Diu‖p
0,p,Ω,

where m is a non-negative integer and 1 ≤ p < ∞.
Let us define H = H1

0 (Ω), H1(Ω) or H1
per(Ω) corresponding to the

boundary condition (1.3), (1.4) respectively. Then the variational form
of (1.1)–(1.4) is to find u ∈ H satisfying

(1.5) B(u, v) = F (v) for all v ∈ H,

where

(1.6) B(u, v) =

∫

Ω

a∇u · ∇v dx,

and

(1.7) F (v) = (f, v)+ < g, v >=

∫

Ω

fv dx +

∫

Γ

gv ds,

with g = 0 unless (1.4) is in force.

2. Error Estimates under Finite Element Method

We now consider the approximation of the solution of problem (1.1)–
(1.4) by the p version of the finite element method. Let τ be a fixed
triangulation of Ω̄ by elements Ki which are line segments in R1 and
closed triangles and quadrilaterals in R2. We will also consider the cor-
responding curvilinear elements. Ki ∩ Kj will be assumed to be either
empty, a common vertex or an entire side of Ki and Kj. We assume
that every v ∈ V is a vertex of some Ki. The mesh on Ω ⊂ R2 also
subdivides the boundary Γ into segments, which we denote by K̃i.

We will often refer to the reference interval I = [−1, 1], the reference
triangle T = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1} and the reference square
Q = I2. For each K ∈ τ , we assume that there exists an invertible map
FK such that

K = FK(K̂),

where K̂ = I, T or Q is the corresponding reference element. Hence we
obtain the correspondences

(2.8) x̂ ∈ K̂ ↔ x = FK(x̂) ∈ K,
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(2.9) (v̂ : K̂ → R) ↔ (v = v̂ ◦ F−1
K : K → R),

between the points x̂ ∈ K̂ and x ∈ K, and between functions defined on
K̂ and K.

We will also assume that for each K̃ ∈ Γ, there exists an invertible
map F̃K̃ such that

K̃ = F̃K̃(I),

which gives the correspondence

(2.10) (v̂ : I → R) ↔ (v = v̂ ◦ F̃−1

K̃
: K̃ → R).

Our basis functions may be complex valued when we consider periodic
boundary conditions.

Unless otherwise stated, the mappings FK , F−1
K (respectively F̃K̃ , F̃−1

K̃
)

will be assumed to be sufficiently smooth with the Jacobian JK (respec-
tively J̃K̃) positive, bounded below away from zero.

We now define the following polynomial spaces {Up(K̂)} on the ref-

erence elements. For K̂ = I, Up(K̂) = Pp(I), the set of polynomials of
degree ≤ p on I.

We then define

Up(K) = {v : v̂ ∈ Up(K̂)},
Sp = {v ∈ C0(Ω) : v|K ∈ Up(K), ∀K ∈ τ}.

We also define

Sp,0 = Sp ∩H.

Then the p version of the FEM to approximate the solution of (1.5)
consists of finding, for p = 1, 2, 3, . . ., a up ∈ Sp,0 satisfying

(2.11) B(up, v) = F (v) for all v ∈ Sp,0.

Let us now give some results which will be used in the next section.

Theorem 2.1. Let {Up(K̂)} be a sequence of polynomial spaces de-
scribed previously and let Sp,0 be the corresponding spaces on Ω. Then
the sequence of projections

P 1
p : H1

0 (Ω) → Sp,0, p = 1, 2, 3, . . . ,

defined by

(2.12)

∫

Ω

∇(P 1
p u) · ∇v dx =

∫

Ω

∇u · ∇v dx, for all v ∈ Sp,0,
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satisfy

(2.13) ‖v − P 1
p v‖s,Ω ≤ Cp−(r−s)‖v‖r,Ω 0 ≤ s ≤ 1 < r,

with C a constant independent of p and v but dependent upon r.

Proof. The two-dimensional case has been proved in [3], the argument
from which can be generalized to the three-dimensional case. A different
proof of the n-dimensional case may be found in [10], the result being
optimal up to arbitrary ε > 0.

3. Error Estimates under Numerical Quadrature

The p version introduced in the previous chapter and related results
for it assume that all integrations have been performed exactly. In prac-
tice, even if the functions a, f and g have simple analytical expressions,
the integrals which appear in (1.6) and (1.7) are seldom computed ex-
actly. Instead, they are approximated through the process of numerical
quadrature, which we now describe.

Let us assume that we are given a family of quadrature rules {Rp}
defined on the reference element K̂ by

(3.14)

∫

K̂

ψ̂(x̂) dx̂ ∼
Lp∑

l=1

ω̂p
l ψ̂(b̂p

l ).

Then on each K ∈ τ , we get a quadrature rule defined by

(3.15)

∫

K

ψ(x) dx ∼
Lp∑

l=1

ωp
l,K ψ(bp

l,K),

where ωp
l,K = JK(b̂p

l ) ω̂p
l and bp

l,K = FK(b̂p
l ). In the case of Neumann

conditions in two-dimensional problems, we also assume that {R̃p} is a
family of rules on I, defined analogously to (3.14), such that for each
K̃ ⊂ Γ, we have

∫

K̃

ψ(x) dx ∼
L̃p∑

l=1

ω̃p

l,K̃
ψ(b̃p

l,K̃
).

Using these rules, the actual problem solved by numerical integration
becomes: Find ũp ∈ Sp,0 satisfying

(3.16) Bp(ũp, v) = Fp(v) = (f, v)p+ <g,v >p, for all v ∈ Sp,0,



Investigation of the error 183

where

Bp(u, v) =
∑
K∈τ

Bp,K(u, v) =
∑
K∈τ

L∑

l=1

ωl,K [a∇u · ∇v](bl,K),(3.17)

(f, v)p =
∑
K∈τ

(f, v)p,K =
∑
K∈τ

L∑

l=1

ωl,K (fv)(bl,K),(3.18)

< g, v >p =
∑

K̃⊂Γ

<g, v>p,K̃=
∑

K̃⊂Γ

L̃∑

l=1

ω̃l,K̃ (gv)(b̃l,K̃),(3.19)

where the dependence of L, ωl,K , etc on p is understood.
As in [5] and [6], we will only consider a family of quadrature rules

{Rp} that satisfy the following assumptions,

(A) ω̂p
l > 0 and b̂p

l ∈ K̂.
(B1) There exists a constant C1, independent of p and v̂ such that

Lp∑

l=1

ω̂p
l v̂2(b̂p

l ) ≤ C1‖v̂‖2
0,K̂

, for all v̂ ∈ Up(K̂).

(B2) There exists a constant C2, independent of p and v̂ such that

Lp∑

l=1

ω̂p
l v̂2(b̂p

l ) ≥ C2‖v̂‖2
0,K̂

, for all v̂ ∈ Ũp(K̂),

where

Ũp(K̂) = { ∂v̂

∂x̂i

: v̂ ∈ Up(K̂), 1 ≤ i ≤ n} ⊂ Up(K̂).

(B3) Rp is exact for all v̂ ∈ Um(K̂) with m = m(p) ≥ m0(p).

The minimum value of m0(p) in (B3) depends upon the space Up(K̂)
(see [6]).
Often, (B1)–(B3) are satisfied because {Rp} satisfies the following stronger
condition,

(B) Rp is exact for all v̂ ∈ Um(K̂) with m ≥ 2p.

We will be particularly interested in Gauss-Legendre (G-L) rules. In
the one-dimensional case, the p-point G-L rule on I satisfies (B1)–(B3)
with m = 2p − 1. In the two-dimensional case, the cross product of
(p+1)-point G-L rules along the x and y axes on Q will satisfy (B) with
m = 2p + 1.
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The conditions (A) and (B2) above guarantee solvability of our ap-
proximate problem, as seen from the following lemma, which was origi-
nally proved in [6].

Lemma 3.1. If the mappings FK are smooth, then there exists a
constant C > 0 such that

C|v|21,Ω ≤ Bp(v, v), for all v ∈ Sp,0,

with C independent of p.

Next, the error will depend upon the smoothness of the coefficient
a(x, y) and mappings FK . To this end, let us note that

Dv(x) = Dv̂(x̂)DF−1
K (x) for any v ←→ v̂,

so that

E = EK̂

(
aJK(DûDF−1

K )(Dv̂DF−1
K )>

)

= EK̂

(
(Dû)BK(Dv̂)>

)

=
n∑

i,j=1

EK̂

(
bK
ij

∂û

∂x̂i

,
∂v̂

∂x̂j

)
.(3.20)

Here, the coefficients bK
ij are entries of the matrix

(3.21) BK = aJK(DF−1
K )(DF−1

K )T ,

and for P : Rn → Rn, DP denotes the Jacobian matrix of P . Suppose
the bK

ij are approximated by the polynomials b̄K
ij ∈ Uq(K̂). Let us define

ρt,s(B) = max
i,j,K

∥∥bK
ij

∥∥
t,s,K̂

,

with the subscript s omitted when s = 2. Then we get the following
lemma which gives a bound for the approximation of bK

ij .
We can prove the following Lemmas using Lemma 3.1.

Lemma 3.2. For Ω ⊂ Rn, let ρt(B) < ∞, where t > n/2. Then there

exists b̄K
ij ∈ Uq(K̂) for which

Kq
B = max

i,j,K

∥∥b̄K
i,j

∥∥
0,∞,K̂

≤ C(ρ0,∞(B) + q−(t−n/2)ρt(B)),(3.22)

eq
B = max

i,j,K

∥∥bK
i,j − b̄K

i,j

∥∥
0,∞,K̂

≤ C q−(t−n/2)ρt(B).(3.23)
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Lemma 3.3. Let up and ũp be the finite element solutions of (2.11)

and (3.16) respectively and b̄K
ij ∈ Uq(K̂). Then

(3.24) ‖ũp−up‖1,Ω ≤ C{eq
B‖u‖1,Ω+Kq

B(‖u−up‖1,Ω+‖u−P 1
r u‖1,Ω)+Ep

F},
where r = m − p − q, P 1

r u is defined by (2.12) and Kq
B, eq

B are as in
(3.22), (3.23) respectively.

The following result gives an asymptotic estimate for the convergence
rate in the H1(Ω) norm using numerical quadrature.

Theorem 3.1. Let Ω ⊂ Rn. Let f ∈ Hs(Ω) with s > n
2

and for
n = 2, g ∈ H s̃(Γ) with s̃ > 1/2 when Neumann conditions are used. Let

bK
ij ∈ H t(K̂) for each i, j, K, with t > n

2
.

Let ũp denote the solution of (3.16), with the quadrature rule satisfy-
ing (A) and (B1)-(B3), or (B), with m large enough. Let q be a positive
integer such that r = m−p−q > 0. Let for n = 2, g 6= 0, the quadrature
rule on I satisfy (A) and (B), with m̃− 2p > 0. Then with Kq

B and eq
B

as in (3.22) and (3.23) respectively,

‖u− ũp‖1,Ω ≤ C{eq
B‖u‖1,Ω + Kq

B}
≤ C

{
q−(t−n/2)ρt(B)‖u‖1,Ω + max{p̃−(k−1), | log p̃|γ p̃−2α}KuK

q
B

}
(3.25)

where p̃ = min(p, r) and the constant C is independent of u, m, m̃, p
and q.

Proof. By the triangle inequality, we have

(3.26) ‖u− ũp‖1,Ω ≤ ‖u− up‖1,Ω + ‖up − ũp‖1,Ω.

Using Lemma 3.3, we get

(3.27) ‖up − ũp‖1,Ω ≤ C{eq
B‖u‖1,Ω + E + Ep

F},
where E is defined and estimated in (3.30). Also, using Lemma 3.2,

(3.28) eq
B‖u‖1,Ω ≤ Cq−(l−n

2
)ρt(B)‖u‖1,Ω.

Finally, with r = m− p− q, using

(3.29) ‖u− up‖1,Ω ≤ CEp
u := C inf

v∈Sp,0

‖u− v‖1,Ω.

to bound ‖u− up‖1,Ω and using

‖u− P 1
r u‖1,Ω ≤ C Er

u,
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we have

(3.30) E = Kq
B(‖u− up‖1,Ω + ‖u− P 1

r u‖1,Ω) ≤ CKq
B(Ep

u + Er
u)

Using

(3.31) ‖u− up‖1,Ω ≤ C Ep
u = C Ku max{| log p|γ p−2α, p−(k−1)},

where

α = min
v
{αv

1} = αv0
1 , γ = N v0(1), Ku =

∑

j,l,v

|dv
jl|+ ‖u1‖k,Ω.

we can now bound the right hand side of (3.30).

The above theorem shows that essentially the rate of convergence is

O
{
q−(t−n/2) + max{p̃−(k−1), | log p̃|γ p̃−2α}

+ max{(m− p)−(s−n/2), (m̃− p)−(s̃−1/2)}} .(3.32)

Also we see from (3.25) that if eq
B, Ep

F are small enough (which happens
when the coefficient a, mappings FK and input data f , g are smooth
enough), then the convergence rate is E p̃

u. More precisely, suppose m ≈
2p (as happens when the usual p point G-L rules are used). Let q = βp,
β ¿ 1, so that r = m− p− q ≈ (1 − β)p. Suppose t, s, s̃ in (3.32) are
large enough so that the middle term dominates. Then the error will
once again satisfy

(3.33) ‖u− ũp‖1,Ω ≤ C(β) max{p−(k−1), | log p|γp−2α},
so that the asymptotic rate is the same as that using exact integration.

If, however, a, FK , f or g are not smooth enough, then one of the
errors eq

B and Ep
F may dominate. Using overintegration with a sufficient

number of points would then reduce these errors in many cases until the
term E p̃

u dominates again and the same estimate as in (3.33) was ob-
served. As overintegration is introduced, the value of m, m̃ is increased.
For fixed p and r, this increases the values of q (which decreases eq

B) and
m−p, m̃−p (which decreases Ep

F ). For more details on the H1(Ω) error,
including computational results, we refer to [6].

4. Numerical Experiments

In this section, we will consider the effect of using mapped elements in
the one-dimensional case. Our numerical results indicate that the effect
of the mapping is apparent only in certain cases.
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In the one-dimensional case, consider problem (1.2) and (1.3) on Ω =
[0, 1] with a(x) = 1. Let the function f be chosen so that the exact
solution u is given by

(4.34) u(x) = x sin πx.

Now consider the mapping

(4.35) G(ξ) =
(1 + ξ + ε)α − εα

(2 + ε)α − εα
,

then x = G(ξ) maps the reference element [−1, 1] to [0, 1]. We have an
affine mapping for α = 1. If α 6= 1, we have a nonlinear mapping whose
smoothness depends on the parameter ε. For ε close to 0, the inverse
of the Jacobian J−1

K will be very large at ξ = −1, giving an unsmooth
mapping.

The above choice of u and G has been numerically analyzed in [6].
It was shown there that if the mapping is smooth (α = 1 or α = 2,
ε = 1.0, for example), no overintegration is necessary for the stiffness
matrix, when the H1 norm error is of interest. We performed experi-
ments that showed the same to be true for the L2 norm. When G is
not smooth (α = 2, ε = 0.01, for example), then overintegration helps
slightly. However, as seen from Figure 1 of [6], the bulk of the error is
due to the deterioration in the approximability properties of the under-
lying subspaces, which is independent of the quadrature used. The same
behavior was observed by us for the L2 norm.

As further shown in [6], there are situations where the accuracy of the
quadrature, rather than the approximability, plays the dominant role.
The example considered in [6] was where f was chosen so that

(4.36) u(x) = sin{π((cx + εα)1/α − (1 + ε))},
where c = (2 + ε)α− εα with the mapping G once again given by (4.35).
Using the function in (4.36) and the mapping in (4.35), we see that

(4.37) u(G(ξ)) = sin πξ,

which is a very smooth function on [−1, 1]. In Figure 1, we have plotted
the H1 error on a log-log scale with α = 1.8 and ε = 0.1 (originally
done in [6]). The solid line represents the error when exact integration
is used, while the broken line represents the errors with G-L quadrature
rule using p, p + 1, p + 2, p + 3 and 2p points on the stiffness matrix
with the load vector being calculated exactly (ie, with a sufficiently high
quadrature rule). As we see, if the quadrature rule for the stiffness
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Figure 1. The H1 error for α = 1.8, ε = 0.1

matrix is not sufficiently accurate, there is a significant loss in the rate
of convergence. As we take more G-L points, the rate of convergence is
closer to the exact case. In fact, using 2p points, the rate of convergence
is essentially the same as that obtained using exact integration.

If we take a more unsmooth mapping by choosing a smaller value of ε,
we expect to use more G-L points to get the correct rate of convergence.
In Figure 2, we have plotted the H1 error with α = 1.8 and ε = 0.01.
Once again, the solid line represents the error when exact integration is
used. We see that practically no convergence is observed using p points
(compared to Figure 1). As expected, we need more G-L points, in fact
p2 points, to recover the correct rate of convergence. This number will
increase further as ε is made smaller.

Let us remark that the above kind of example, where overintegration
may play a significant role, does not arise except in special situations.
One such situation (in two-dimensions) is the method of auxiliary map-
pings [2] where the (unsmooth) mappings are used to smooth out rα

type singularities.
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[4] I. Babuška and M. Suri, The p− and h− p versions of the finite element method.
An Overview, Computer Meth. in Appl. Mech. and Eng. 80, 5–26 (1990).

[5] U. Banerjee and M. Suri, The analysis of numerical integration in p version finite
element eigenvalue approximation, Numer. Meth. PDEs, (1992)

[6] U. Banerjee and M. Suri, The effect of numerical quadrature in the p version of
the finite element method, Math. Comp., July, (1992)

[7] C. Bernardi and Y. Maday, Polynomial approximation of some singular functions
Applicable Analysis (1991).

[8] F. Brezzi and G. Gilardi, Functional spaces, in Finite Element Handbook, ed. H.
Kardestuncer, McGraw-Hill, New York, 1987.

[9] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials
in Sobolev spaces, Math. Comp., 38 67–86 (1982)

[10] M. R. Dorr. The approximation theory for the p-version of the finite element
method, SIAM J. Numer. Anal., 21 1180–1207 (1984).

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.



190 Young-Kyun Yang and Chang-Geun Kim

[12] L. B. Wahlbin, On the sharpness of certain estimates for H1 projections into
finite element spaces: influence of a reentrant corner Math. Comp. 42, 1–8 (1984).

Young-Kyun Yang
School of the Liberal Arts, Seoul National University of Technology,
Seoul 139-743, Korea
E-mail : ykyang@plaza1.snut.ac.kr

Chang-Geun Kim
Department of Mathematics,
Research Institute of Basic Science, Kwangwoon University
Seoul 139–701, Korea
E-mail : ckim@gwu.ac.kr


