• Title/Summary/Keyword: p-semisimple

Search Result 16, Processing Time 0.018 seconds

ON MALCEV ALGEBRA BUNDLES

  • HOWIDA ADEL ALFRAN;K. KAMALAKSHI;R. RAJENDRA;P. SIVA KOTA REDDY
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • In this paper, we study Malcev algebra bundles and Malcev algebra bundles of finite type. Lie algebra bundles and Lie transformation algebra bundles are defined using given Malcev algebra bundle and we conclude some results for finite type.

PSEUDO P-CLOSURE WITH RESPECT TO IDEALS IN PSEUDO BCI-ALGEBRAS

  • MOUSSAEI, HOSSEIN;HARIZAVI, HABIB
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.65-77
    • /
    • 2020
  • In this paper, for any non-empty subsets A, I of a pseudo BCI-algebra X, we introduce the concept of pseudo p-closure of A with respect to I, denoted by ApcI, and investigate some related properties. Applying this concept, we state a necessary and sufficient condition for a pseudo BCI-algebra 1) to be a p-semisimple pseudo BCI-algebra; 2) to be a pseudo BCK-algebra. Moreover, we show that Apc{0} is the least positive pseudo ideal of X containing A, and characterize it by the union of some branches. We also show that the set of all pseudo ideals of X which ApcI = A, is a complete lattice. Finally, we prove that this notion can be used to define a closure operation.

LOWER AND UPPER FORMATION RADICAL OF NEAR-RINGS

  • Saxena, P.K.;Bhandari, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.19 no.2
    • /
    • pp.205-211
    • /
    • 1979
  • In this paper we continue the study of formation radical (F-radical) classes initiated in [3]. Hereditary and stronger properties of F-radical classes are discussed by giving construction for lower hereditary, lower stronger and lower strongly hereditary F-radical classes containing a given class M. It is shown that the Baer F-radical B is the lower strongly hereditary F-radical class containing the class of all nilpotent ideals and it is the upper radical class with $\{(I,\;N){\mid}N{\in}C,\;N\;is\;prime\}{\subset}SB$ where SB denotes the semisimple F-radical class of B and C is an arbitrary but fixed class of homomorphically closed near-rings. The existence of a largest F-radical class contained in a given class is examined using the concept of complementary F-radical introduced by Scott [5].

  • PDF

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.