DOI QR코드

DOI QR Code

PSEUDO P-CLOSURE WITH RESPECT TO IDEALS IN PSEUDO BCI-ALGEBRAS

  • MOUSSAEI, HOSSEIN (Department of Mathematics, Shahid Chamran University of Ahvaz) ;
  • HARIZAVI, HABIB (Department of Mathematics, Shahid Chamran University of Ahvaz)
  • Received : 2019.03.28
  • Accepted : 2019.10.11
  • Published : 2020.01.30

Abstract

In this paper, for any non-empty subsets A, I of a pseudo BCI-algebra X, we introduce the concept of pseudo p-closure of A with respect to I, denoted by ApcI, and investigate some related properties. Applying this concept, we state a necessary and sufficient condition for a pseudo BCI-algebra 1) to be a p-semisimple pseudo BCI-algebra; 2) to be a pseudo BCK-algebra. Moreover, we show that Apc{0} is the least positive pseudo ideal of X containing A, and characterize it by the union of some branches. We also show that the set of all pseudo ideals of X which ApcI = A, is a complete lattice. Finally, we prove that this notion can be used to define a closure operation.

Keywords

References

  1. T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.
  2. W.A. Dudek, Y.B. Jun, Pseudo BCI-algebras, East Asian Math. J. 24 (2008), 187-190.
  3. G. Dymek, p-semisimple pseudo BCI-algebras, J. Mult-Valued Logic Soft Comput. 19 (2012), 461-474.
  4. G. Georgescu, A. Iorgulescu, Pseudo BCK-algebras: an extension of BCK-algebras, Combinatorics, computability and logic (Constanta, a, 2001), 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci. Springer, London, 2001.
  5. G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February (2000), 90-92.
  6. G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, Romania, May (1999), 961-968.
  7. A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE, Bucharest, 2008.
  8. K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. https://doi.org/10.3792/pja/1195522171
  9. Y.B. Jun, Characterizations of pseudo BCK-algebras, Sci. Math. Jpn. 57, (2003), 265-270.
  10. Y.B. Jun, H.S. Kim, J. Neggers, On pseudo BCI-ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39-46.
  11. Y.B. Jun, M. Kondo, K.H. Kim, Pseudo ideals of pseudo BCK-algebras, Sci. Math. Jpn. 58 (2003), 93-97.
  12. K.J. Lee, C.H. Park, Some ideals of pseudo BCI-algebras, J. Appl. Math. Informatics 27 (2009), 217-231.
  13. Y.L. Liu, S.Y. Liu, Y. Xu, Pseudo BCK-algebras and PD-posets, Soft Comput 11 (2007), 91-101. https://doi.org/10.1007/s00500-006-0055-9
  14. Y.L. Liu, J. Meng, X.H. Zhang, Z.C. Yue, q-ideals and a-ideals in BCI-algebras, Southeast Asian Bull. Math. 24, (2000), 243-253. https://doi.org/10.1007/s10012-000-0243-y
  15. E.H. Moore Introduction to a form of general analysis, The New Haven mathematical colloquium. Yale University Press, New Haven, 1910.
  16. H. Yisheng, BCI-Algebra, Published by Science Press, 2006.
  17. X.H. Zhang, H. Jiang, S.A. Bhatti,On p-ideals of a BCI-algebra, Punjab Univ. J. Math. 27 (1994), 121-128.