DOI QR코드

DOI QR Code

ON MALCEV ALGEBRA BUNDLES

  • HOWIDA ADEL ALFRAN (Department of Mathematics, Al-Leith University College, Umm Al Qura University) ;
  • K. KAMALAKSHI (Department of Mathematics, Field Marshal K.M. Cariappa College (A Constituent College of Mangalore University)) ;
  • R. RAJENDRA (Department of Mathematics, Field Marshal K.M. Cariappa College (A Constituent College of Mangalore University)) ;
  • P. SIVA KOTA REDDY (Department of Mathematics, JSS Science and Technology University)
  • Received : 2023.11.19
  • Accepted : 2023.12.08
  • Published : 2024.01.30

Abstract

In this paper, we study Malcev algebra bundles and Malcev algebra bundles of finite type. Lie algebra bundles and Lie transformation algebra bundles are defined using given Malcev algebra bundle and we conclude some results for finite type.

Keywords

Acknowledgement

The authors would like to extend their gratitude to the referees for the valuable suggestions.

References

  1. H.A. AlFran, K. Kamalakshi, R. Rajendra and P. Siva Kota Reddy, On Smooth Lie Algebra Bundles of Finite Type, Glob. Stoch. Anal. 11 (2024), 75-79.
  2. A. Douady and M. Lazard, Espace fibr'es alg'ebres de Lie et en groupes, Invent. Math. 1 (1966), 133-151. https://doi.org/10.1007/BF01389725
  3. B.S. Kiranagi, Lie algebra bundles, Bull. Sci. Math. 102 (1978), 57-62.
  4. B.S. Kiranagi, Semisimple Lie algebra bundles, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 27 (1983), 253-257.
  5. B.S. Kiranagi, Lie algebra bundles and Lie rings, Proc. Nat. Acad. Sci. India Sect. A 54 (1984), 38-44.
  6. B.S. Kiranagi, G. Prema and Ranjitha Kumar, On the radical bundle of a Lie algebra bundle, Proc. Jangjeon Math. Soc. 15 (2012), 447-453.
  7. B.S. Kiranagi, Ranjitha Kumar and G. Prema, On completely semisimple Lie algebra bundles, J. Algebra Appl. 14 (2015), 1550009, pp 11.
  8. B.S. Kiranagi, Ranjitha Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc. 21 (2018), 293-300.
  9. Ranjitha Kumar, G. Prema and B.S. Kiranagi, Lie algebra bundles of finite type, Acta Univ. Apulensis Math. Inform. 39 (2014), 151-160. https://doi.org/10.17114/j.aua.2014.39.13
  10. A.A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458. https://doi.org/10.1090/S0002-9947-1961-0143791-X
  11. L.N. Vaserstein, Vector Bundles and Projective Modules, Trans. Amer. Math. Soc. 294 (1986), 749-755. https://doi.org/10.1090/S0002-9947-1986-0825734-3