Acknowledgement
The authors would like to extend their gratitude to the referees for the valuable suggestions.
References
- H.A. AlFran, K. Kamalakshi, R. Rajendra and P. Siva Kota Reddy, On Smooth Lie Algebra Bundles of Finite Type, Glob. Stoch. Anal. 11 (2024), 75-79.
- A. Douady and M. Lazard, Espace fibr'es alg'ebres de Lie et en groupes, Invent. Math. 1 (1966), 133-151. https://doi.org/10.1007/BF01389725
- B.S. Kiranagi, Lie algebra bundles, Bull. Sci. Math. 102 (1978), 57-62.
- B.S. Kiranagi, Semisimple Lie algebra bundles, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S.) 27 (1983), 253-257.
- B.S. Kiranagi, Lie algebra bundles and Lie rings, Proc. Nat. Acad. Sci. India Sect. A 54 (1984), 38-44.
- B.S. Kiranagi, G. Prema and Ranjitha Kumar, On the radical bundle of a Lie algebra bundle, Proc. Jangjeon Math. Soc. 15 (2012), 447-453.
- B.S. Kiranagi, Ranjitha Kumar and G. Prema, On completely semisimple Lie algebra bundles, J. Algebra Appl. 14 (2015), 1550009, pp 11.
- B.S. Kiranagi, Ranjitha Kumar, K. Ajaykumar and B. Madhu, On derivation algebra bundle of an algebra bundle, Proc. Jangjeon Math. Soc. 21 (2018), 293-300.
- Ranjitha Kumar, G. Prema and B.S. Kiranagi, Lie algebra bundles of finite type, Acta Univ. Apulensis Math. Inform. 39 (2014), 151-160. https://doi.org/10.17114/j.aua.2014.39.13
- A.A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458. https://doi.org/10.1090/S0002-9947-1961-0143791-X
- L.N. Vaserstein, Vector Bundles and Projective Modules, Trans. Amer. Math. Soc. 294 (1986), 749-755. https://doi.org/10.1090/S0002-9947-1986-0825734-3