• Title/Summary/Keyword: p-nitrophenyl palmitate

Search Result 15, Processing Time 0.022 seconds

Catalytic Hydrolysis of p-Nitrophenyl Palmitate in Aqueous Dipalmitoyl Phosphatidyl Choline Bilayer Membrane (Dipalmitoyl Phosphatidyl Choline Bilayer Membrane 촉매에 의한 para-Nitrophenyl Palmitate의 가수분해 반응)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.48-51
    • /
    • 2008
  • Dipalmitoyl phosphatidyl choline and p-nitrophenyl palmitate were directly sonicated in acidic water for 6 minutes to give clear stock solutions. The catalytic hydrolysis of p-nitrophenyl palmitate was studied at $30-50^{\circ}C$ in the presence of unilamellar vesicle and mixture of unilamellar and multilamellar aggregates. The difference of reaction rate between unilamellar and multilamellar was observed. The rate of unilamellar reaction compared to the rate of mixture reaction showed more catalytic effect. The phase transition temperature of vesicle was measured at $37-44^{\circ}C$.

Purification and Characterization of the Lipase from Acinetobacter sp. B2

  • Sohn, Sung-Hwa;Park, Kyeong-Ryang
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.189-195
    • /
    • 2005
  • Industrial development has increase consumption of crude oil and environmental pollution. A large number of microbial lipolytic enzymes have been identified and characterized to date. To development for a new lipase with catalytic activity in degradation of crude oil as a microbial enzyme, Acinetobactor sp. B2 was isolated from soil samples that were contaminated with oil in Daejon area. Acinetobactor sp. B2 showed high resistance up to 10 mg/mL unit to heavy metals such as Ba, Li, Al, Cr, Pb and Mn. Optimal growth condition of Acinetobactor sp. B2 was confirmed $30^{\circ}C$. Lipase was purified from the supernatant by Acinetobactor sp. B2. Its molecular mass was determined to the 60 kDa and the optimal activity was shown at $40^{\circ}C$ and pH 10. The activation energies for the hydrolysis of p-nitrophenyl palmitate were determined to be 2.7 kcal/mol in the temperature range 4 to $37^{\circ}C$. The enzyme was unstable at temperatures higher than $60^{\circ}C$. The Michaelis constant $(K_{m})\;and\;V_{max}$ for p-nitrophenyl palmitate were $21.8{\mu}M\;and\;270.3{\mu}M\;min^{-1}mg\;of\;protein^{-1}$, respectively. The enzyme was strongly inhibited by $Cd{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},\;EDTA$, 2-Mercaptoethalol. From these results, we suggested that lipase purified from Acinetobactor sp. B2 should be able to be used as a new enzyme for degradation of crude oil, one of the environmental contaminants.

Uniqueness of Microbial Cutinases in Hydrolysis of p-Nitrophenyl Esters

  • KIM, YANG-HOON;JEEWON LEE;SEUNG-HYEON MOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • Using fungal (Fusarium solani f. pisi) and bacterial (Pseudomonas mendocina) cutinases, the initial hydrolysis rate of p-nitrophenyl esters was systematically estimated for a wide range of enzyme and substrate concentrations using a 96-well microplate reader. Both cutinases exhibited a high substrate specificity; i.e. a high hydrolytic activity on p-nitrophenyl butyrate (PNB), yet extremely low activity on p-nitrophenyl palmitate (PNP). When compared to the hydrolysis of PNB and PNP by other hydrolases [lipases and esterases derived from different microbial sources, such as bacteria (Pseudomonas cepacia, Psedomonas furescens, Baciilus stearothermophilus), molds (Aspeillus niger, mucor miehei), and yeasts (Candida rugosa, Candida cylindracea)], the above substrate specificity would seem to be a unique characteristic of cutinases. Secondly, the hydrolytic activity of the cutinases on PNB appeared much faster than that of the other hydrolytic enzymes mentioned above. Furthermore, the current study proved that even when the cutinases were mixed with large amounts of other hydrolases (lipases or esterases), the Initial hydrolysis rate of PNB was determined only by the cutinase concentration for each PNB concentration. This property of cutinase activity would seem to result from a higher accessibility to the substrate PNB, compared with the other hydrolytic enzymes. Accordingly, these distinct properties of cutinases may be very useful in the rapid and easy isolation of various natural cutinases with different microbial sources, each of which may provide a novel industrial application with a specific enzymatic function.

Purification and Characterization of Lipase from Acinetobacter sp. B2 Isolated from Oil­contaminated Soil (유류오염지역에서 분리한 Acinetobacter sp. B2로부터의 Lipase 정제 및 특성)

  • Son Seung Hwa;Park Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.320-327
    • /
    • 2004
  • Three hundreds thirty two bacterial colonies which were able to degrade crude oil were isolated from soil sam­ples that were contaminated with oil in Daejeon area. Among them, one bacterial strain was selected for this study based on its higher oil degrading ability, and this selected bacterial strain was identified as Acinetobactor sp. B2 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Acinetobactor sp. B2 was able to utilize various carbohydrates but did not utilize trehalose and mannitol as a sole carbon source. Acinetobactor sp. B2 showed a weak resistance to antibiotics such as kanamycin, streptomycin, tetracycline and spectinomycin, but showed a high resistance up to mg/ml unit to heavy metals such as Ba, Li, Mn, AI, Cr and Pb. The optimal growth temperature of Acinetobactor sp. B2 was $30^{\circ}C.$ The lipase produced by Acinetobactor sp. B2 was purified by ammonium sulfate precipitation, DEAE-Toyopearl 650M ion exchange chromatography and Sephadex gel filtration chromatography. Its molecular mass was about 60 kDa and condition for the optimal activity was observed at $40^{\circ}C$ and pH 10, respectively. The activation energy of lipase for the hydrolysis of p­nitrophenyl palmitate was 2.7 kcal/mol in the temperature range of 4 to $37^{\circ}C,$ and the enzyme was unstable at the temperature higher than $60^{\circ}C.$ The Michaelis constant $(K_m)\;and\;V_{max}$ for p-nitrophenyl palmitate were 21.8 uM and $270.3\;{\mu}M\;min^{-1}mg^{-1},$ respectively. This enzyme was strongly inhibited by 10 mM $Cd^{2+},\;Co^{2+},\;Fe^{2+},\;Hg^{2+},$ EDTA and 2-Mercaptoethalol.

Screening of Exiguobacterium acetylicum from Soil Samples Showing Enantioselective and Alkalotolerant Esterase Activity

  • Hwang Bum-Yeol;Kim Ji-Hyun;Kim Juhan;Kim Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • About 3,000 bacterial colonies with esterase activities were isolated from soil samples by enrichment culture and halo-size on Luria broth-tributyrin (LT) plates. The colonies were assayed for esterase activity in microtiter plates using enantiomerically pure (R)- and (S)-2-phenylbutyric acid resorufin ester (2PB-O-res) as substrates. Two enantioselective strains (JH2 and JH13) were selected by the ratio of initial rate of hydrolysis of enantiomerically pure (R)- and (S)-2-PB-O-res. When cell pellets were used, both strains showed high apparent enantioselectivity ($E_{app}>100$) for (R)-2PB-O-res and were identified as Exiguobacterium acetylicum. The JH13 strain showed high esterase activity on p-nitrophenyl acetate (pNPA), but showed low lipase activity on p-nitrophenyl palmitate (pNPP). The esterase was located in the soluble fraction of the cell extract. The crude intracellular enzyme preparation was stable at a pH range from 6.0 to 11.0.

Identification of Novel Esterase from Metagenomic Library of Yangtze River

  • Wu, Chao;Sun, Baolin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • A metagenomic library of surface-water microbes from the Yangtze River in China was constructed, and a novel esterase, designated as EstY, was isolated and characterized. EstY had 423 amino acids with an estimated molecular mass of 44 kDa and pI of 7.28. It hydrolyzed various p-nitrophenyl esters(acetate, butyrate, caprate, caprylate, laurate, myristate, and palmitate) and its best substrate was p-nitrophenyl caprate(C8). The optimum pH for EstY activity was 9.0 and the optimum temperature was $50^{\circ}C$. Metal ions, such as $Mn^{2+},\;Co^{2+},\;Hg^{2+},\;Zn^{2+},\;and\;Fe^{3+}$, strongly inhibited the activity of EstY, whereas $Mg^{2+}$ was required for maximal activity. Activity remained in the presence of 10% alcohol, acetone, isopropanol, and dimethyl sulfoxide, respectively. An analysis of the amino acid sequence deduced from estY revealed that it had 7 closely related lipolytic enzymes. Moreover, a sequence analysis showed that EstY, like its 7 relatives, did not belong to any known lipolytic enzyme family.

Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Rhizomucor miehei and Rhizopus oryzae

  • Tako, Miklos;Kotogan, Alexandra;Papp, Tamas;Kadaikunnan, Shine;Alharbi, Naiyf S.;Vagvolgyi, Csaba
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.277-288
    • /
    • 2017
  • Rhizomucor miehei NRRL 5282 and Rhizopus oryzae NRRL 1526 can produce lipases with high synthetic activities in wheat bran-based solid-state culture. In this study, the purification and biochemical characterization of the lipolytic activities of these lipases are presented. SDS-PAGE indicated a molecular mass of about 55 and 35 kDa for the purified R. miehei and Rh. oryzae enzymes, respectively. p-Nitrophenyl palmitate (pNPP) hydrolysis was maximal at $40^{\circ}C$ and pH 7.0 for the R. miehei lipase, and at $30^{\circ}C$ and pH 5.2 for the Rh. oryzae enzyme. The enzymes showed almost equal affinity to pNPP, but the $V_{max}$ of the Rh. oryzae lipase was about 1.13 times higher than that determined for R. miehei using the same substrate. For both enzymes, a dramatic loss of activity was observed in the presence of 5 mM $Hg^{2+}$, $Zn^{2+}$, or $Mn^{2+}$, 10 mM N-bromosuccinimide or sodium dodecyl sulfate, and 5-10% (v/v) of hexanol or butanol. At the same time, they proved to be extraordinarily stable in the presence of n-hexane, cyclohexane, n-heptane, and isooctane. Moreover, isopentanol up to 10% (v/v) and propionic acid in 1 mM concentrations increased the pNPP hydrolyzing activity of R. miehei lipase. Both enzymes had 1,3-regioselectivity, and efficiently hydrolyzed p-nitrophenyl (pNP) esters with C8-C16 acids, exhibiting maximum activity towards pNP-caprylate (R. miehei) and pNP-dodecanoate (Rh. oryzae). The purified lipases are promising candidates for various biotechnological applications.

Purification and Characterization of a Lipolytic Enzyme Produced by Aeromonas hydrophila PL43 (Aeromonas hydrophila PL43이 생산하는 지질분해 효소의 정제 및 특성)

  • Kim, Yong-Woo;Hong, Sung Wook;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.130-139
    • /
    • 2016
  • A bacterial strain, producing an excellent lipolytic enzyme, was isolated from the intestinal tracts of an earthworm (Eisenia fetida). The strain was identified as Aeromonas hydrophila by phenotypic, chemotaxonomic characteristics and 16S ribosomal DNA analysis, and was designated as Aeromona hydrophila PL43. The lipolytic enzyme from A. hydrophila PL43 was purified via 35−45% ammonium sulfate precipitation, DEAE-sepharose fast flow ion-exchange, and sephacryl S-300HR gel filtration chromatography. The yield of the purified enzyme was 3.7% and 2.5% of the total activity of crude extracts with p-nitrophenyl butyrate (pNPB) and p-nitrophenyl palmitate (pNPP) as substrates, respectively. The molecular weight of the purified enzyme was approximately 74 kDa using gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and zymography. The optimal activity of purified enzyme was observed at 50℃ and pH 8.0 using pNPB, and 60℃ and pH 8.0 using pNPP. The purified enzyme was stable in the ranges 20− 60℃ and pH 7.0−10.0. The activity of purified enzyme was inhibited by PMSF, pepstatin A, Co2+, Cu2+, and Fe2+, but was recovered by metal chelating of EDTA. The Km and Vmax values of the purified enzyme were 1.07 mM and 7.27 mM/min using pNPB and 1.43 mM and 2.72 mM/min using pNPP, respectively.

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli

  • Kim, Tae Ryeon;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.401-406
    • /
    • 1995
  • The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.