DOI QR코드

DOI QR Code

Purification and the Catalytic Site Residues of Pseudonomas fragil Lipase Expressed in Escherichia coli


Abstract

The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.

Keywords

References

  1. Biochem. J. v.27 Kim, T.R.;Park, S.H.;Yang, C.H.
  2. J. Dairy Sci. v.44 Witter, L.D.
  3. Enzyme Microb. Technol. v.10 Aleman-Gomez, J.A.;Colwell, N.S.;Sasser, C.T.;Kumar, V.B.;Bailey, J.E.
  4. Enzyme Microb. Technol. v.10 O'Connor, K.C.;Bailey, J.E.
  5. Biochim. et Biophy. acta. v.921 Rollof, J.;Hedstrom, S.A.;Nilsson-Ehle, P.
  6. In Lipolitic Enzymes Brockerhoff, H.;Jensen, R.G.
  7. J. Gen. Microbiol. v.48 Mencher, J.R.;Alford, J.A.
  8. App. Microbiol. v.18 Lu, J.Y.;Liska, B.J.
  9. Gene v.67 Smith, D.B.;Johnson, K.S.
  10. Bio/Technology v.7 Gearing, D.P.;Nicola, N.A.;Metcalf, D.;Foote, S.;Willson, T.A.;Grough, N.M.;Williams, R.L.
  11. Nature v.346 Christianson, D.W.;Alexander, R.S.
  12. Nature v.343 Blow, D.
  13. Nature v.343 Winkler, L.;D'Arcy, A.;Hunziker, W.
  14. Nature v.343 Brady, L.;Brzozowski, A.M.;Derewenda, Z.S.;Dodson, E.;Dodson, G.;Tolley, S.;Turkenburg, J.P.;Christiansen, L.;Huge-Jensen, B.;Norskov, L.;Thim, L.;Menge, U.
  15. Nature v.351 Scrag, J.d.;Li, Y.;Wu, S.;Cygler, M.
  16. FEBS Lett. v.3 Polgar, L.
  17. Biochi. et Biophys Acta v.1165 Longhi, S.;Lotti, M.;Fusetti, F.;Pizzi, E.;Tramontano, A.;Alberghina, L.
  18. J. Mol. Biol. v.227 Derewenda, Z.;Derewenda, U.;Dodson, G.G.
  19. Biochem. Biophys. Res. Comm. v.141 Kugimiya, W.;Otani, Y.;Hashimoto, Y.;Takagi, Y.
  20. FEBS Lett. v.242 Aoyama, S.;Yoshida, N.;Inouye, S.
  21. J. Gen. Microbiol. v.134 Wohlfarth, S.;Winkler, U.K.
  22. Archi. Biochem. Biophys. v.296 Chihara-Siomi, M.;Yochikawa, K.;Oshima-Hirayama, N.;Yamamoto, K.;Sogabe, Y.;Nakatani, T.;Nishioka, T.;Oda, J.
  23. J. Biol. Chem. v.193 Lowry, O.H.;Rosebrough, N.J.;Farr, A.L.;Randall, R.J.
  24. Nature v.277 Laemmli, U.K.
  25. Biochem. J. v.183 Adams, M.W.W.;Hall, D.O.
  26. J. Biol. Chem. v.261 Burdett, R.A.;Quinn, D.M.
  27. Chem. Pham. Bull. v.23 Sugiura, M.;Isobe, M.
  28. Molecular Cloning Maniatis, T.;Fritsch, E.F.;Sambrook, J.
  29. Biochem. J. v.240 Marston, A.O.
  30. Meth. Enzym. v.185 Goeddel, D.V.
  31. In Lipases Brockman, H.L.;Borgstrom, B.(ed.);Brockman, H.L.(ed.)
  32. J. Dairy Sci. v.36 Nashif, S.A.;Nelson, F.E.
  33. J. Biol. Chem. v.267 Lowe, M.E.
  34. Biochemistry v.32 Hjorth, A.;Carriere, F.;Cudrey, C.;Woldike, H.;Boel, E.;Lawson, D.M.;Ferrato, F.;Cambillau, C.;Dodson, G.G.;Thim, L.;Verger, R.
  35. Biochem Biophys. Res. Comm. v.146 Bello, M.;Thomas, D.;Legoy, M.D.