• Title/Summary/Keyword: p-harmonic function

Search Result 47, Processing Time 0.026 seconds

ASYMPTOTIC BEHAVIOR OF A-HARMONIC FUNCTIONS AND p-EXTREMAL LENGTH

  • Kim, Seok-Woo;Lee, Sang-Moon;Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.423-432
    • /
    • 2010
  • We describe the asymptotic behavior of functions of the Royden p-algebra in terms of p-extremal length. We also prove that each bounded $\cal{A}$-harmonic function with finite energy on a complete Riemannian manifold is uniquely determined by the behavior of the function along p-almost every curve.

UNIQUENESS OF SOLUTIONS OF A CERTAIN NONLINEAR ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1577-1586
    • /
    • 2018
  • In this paper, we prove that if every bounded ${\mathcal{A}}$-harmonic function on a complete Riemannian manifold M is asymptotically constant at infinity of p-nonparabolic ends of M, then each bounded ${\mathcal{A}}$-harmonic function is uniquely determined by the values at infinity of p-nonparabolic ends of M, where ${\mathcal{A}}$ is a nonlinear elliptic operator of type p on M. Furthermore, in this case, every bounded ${\mathcal{A}}$-harmonic function on M has finite energy.

UNIQUENESS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM OF CERTAIN NONLINEAR ELLIPTIC OPERATORS VIA p-HARMONIC BOUNDARY

  • Lee, Yong Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1025-1031
    • /
    • 2017
  • We prove the uniqueness of solutions for the boundary value problem of certain nonlinear elliptic operators in the setting: Given any continuous function f on the p-harmonic boundary of a complete Riemannian manifold, there exists a unique solution of certain nonlinear elliptic operators, which is a limit of a sequence of solutions of the operators with finite energy in the sense of supremum norm, on the manifold taking the same boundary value at each p-harmonic boundary as that of f.

MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY OF GRAPHS

  • Lee, Yong Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1241-1250
    • /
    • 2012
  • We prove the maximum principle and the comparison principle of $p$-harmonic functions via $p$-harmonic boundary of graphs. By applying the comparison principle, we also prove the solvability of the boundary value problem of $p$-harmonic functions via $p$-harmonic boundary of graphs.

HARMONIC CONJUGATES OF WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Nam, Kye-Sook;Yi, Heung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.449-457
    • /
    • 2003
  • On the setting of the upper half-space of the Euclidean space $R^{n}$, we show that to each weighted harmonic Bergman function $u\;\epsilon\;b^p_{\alpha}$, there corresponds a unique conjugate system ($upsilon$_1,…, $upsilon_{n-1}$) of u satisfying $upsilon_j{\epsilon}\;b^p_{\alpha}$ with an appropriate norm bound.

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.

HARMONIC OPERATORS IN $L^p(V N(G))$

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.319-329
    • /
    • 2012
  • For a norm 1 function ${\sigma}$ in the Fourier-Stieltjes algebra of a locally compact group we define the space of ${\sigma}$-harmonic operators in the non-commutative $L^p$-space associated to the group von Neumann algebra of G. We will investigate some properties of the space and will obtain a precise description of it.