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MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF

p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY

OF GRAPHS

Yong Hah Lee

Abstract. We prove the maximum principle and the comparison prin-
ciple of p-harmonic functions via p-harmonic boundary of graphs. By
applying the comparison principle, we also prove the solvability of the
boundary value problem of p-harmonic functions via p-harmonic bound-
ary of graphs.

1. Introduction

The maximum principle and the comparison principle are interesting topics
in studying the behavior of solutions of some equations. In particular, the max-
imum principle and the comparison principle enable us to control the behavior
of solutions of a certain equation by the boundary data of the solutions. Such
a study has been developed for several equations. For instance, Holopainen
and Soardi [1] proved the maximum principle and the comparison principle of
p-harmonic functions on finite subsets of graphs. Later, Kim and Chung [2]
generalized the result of Holopainen and Soardi by extending the result into
infinite subsets. However, those results are related to the real boundary, not
the ideal boundary like infinite boundary. In fact, in the case that a given
graph has no boundary, we need to lean on the ideal boundary in controlling
the behavior of solutions at infinity of the graph. In line with the viewpoint,
we rebuild the maximum principle and the comparison principle to control the
whole behavior of p-harmonic functions on the graphs.

In this paper, we newly suggest the maximum principle and the comparison
principle of p-harmonic functions on a graph, in such a way that they are
described in terms of the p-harmonic boundary as follows:
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Theorem 1.1. Let G be a graph of bounded degree and u, v ∈ HBDp(G). Then

the followings hold:

(i) (Maximum principle) If a ≤ u ≤ b on ∆p,G for some constants a and

b, then a ≤ u ≤ b on VG.

(ii) (Comparison principle) If v ≤ u on ∆p,G, then v ≤ u on VG.

This result is a direct generalization of that of Holopainen and Soardi [1].
As an application of the comparison principle, we also prove the solvability of
the boundary value problem of p-harmonic functions in terms of p-harmonic
boundary of graphs as follows:

Theorem 1.2. Let G be a graph of bounded degree. Then for any continuous

function f on ∆p,G, there exists a unique p-harmonic function h, which is a

limit of a sequence of functions in HBDp(G) in the sense of supremum norm,

such that

h(x) = f(x)

for all x ∈ ∆p,G.

2. Preliminaries

Let G = (VG, EG) be an infinite graph with no self-loops, where VG and
EG denote the set of all vertices and the set of all edges of G, respectively. If
vertices x, y in VG are the endpoints of a same edge, then we say that they are
neighbors, and write y ∼ x and x ∼ y. The degree of x is the number of all
neighbors of x. If the degrees of vertices of a graph G are uniformly bounded,
then G is called a graph of bounded degree.

A sequence (x0, x1, . . . , xn) of vertices in VG is called a path from x0 to xn

with the length n if xk ∼ xk−1 for each k = 1, 2, . . . , n. A subset U of VG is
said to be connected if any two vertices in U are can be joined by a path in U .
We define the distance d(x, y) between two vertices x and y to be the minimum
of the lengths of paths from x to y. Then d defines a metric on VG. For this
metric d, define an n-neighborhood Nn(x) = {y ∈ VG : d(x, y) ≤ n} for each
x ∈ VG and for each n ∈ N. From now on, all the graphs considered in this
paper are connected infinite with no self loops and of bounded degree, unless
otherwise specified.

Let u be a real valued function defined on S ∪ ∂S, where ∂X = {x ∈ VG :
d(x,X) = 1} for each subset X of VG. For a real number p > 1, define the
p-Dirichlet sum Ip(u, S) of u by

Ip(u, S) =
∑

x∈S

|Du|p(x),

where |Du|p(x) =
∑

y∼x |u(y)− u(x)|p. In particular, if Ip(u, VG) < ∞, then u
is said to be energy finite. Define the p-Laplacian of u at x ∈ S by

∆pu(x) =
∑

y∼x

|u(y)− u(x)|p−2(u(y)− u(x)).
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In the case 1 < p < 2, we make a convention that |u(y)−u(x)|p−2(u(y)−u(x)) =
0 if u(y) = u(x). In particular, if ∆pu(x) = 0 for all x ∈ S, then the function
u is called p-harmonic on S.

Let us put

T (u, η;x, y) = |u(y)− u(x)|p−2(u(y)− u(x))(η(y) − η(x)),

whenever u and η are functions defined at x and y. Since |a|p−2a(a − b) ≥
|b|p−2b(a− b) for all real number a 6= b, we have

(1) T (u, u− v;x, y) ≥ T (v, u− v;x, y)

if u and v are defined at x and y. The equality occurs only if u(x) − v(x) =
u(y)− v(y).

If S is a finite subset of VG and h is a real valued function on S ∪ ∂S, then
the followings are equivalent [1]:

(i) A function h is p-harmonic on S.
(ii) For any function η on S ∪ ∂S such that η = 0 on ∂S, we have

∑

x∈S

∑

y∼x

T (u, η;x, y) = 0.

(iii) For every function f on S ∪ ∂S such that f = h on ∂S, we have
∑

x∈S

|Dh|p(x) ≤
∑

x∈S

|Df |p(x).

In particular, a real valued function h is p-harmonic on VG if
∑

x∈VG

∑

y∼x

T (u, η;x, y) = 0

for all finitely supported real valued function η on VG.
In the case of p-harmonic functions, the comparison principle on finite sub-

sets and the local Harnack inequality hold as follow (See [1] for the proof):

Proposition 2.1. Let S be a finite subset of VG. Suppose that u and v are

p-harmonic on S such that u ≥ v on ∂S. Then u ≥ v on S.

Proposition 2.2. Let u be nonnegative on S∪∂S and p-harmonic on S. Then
for each x ∈ S, there exists a constant C such that

max
y∼x

u(y) ≤ Cu(x).

For each energy finite real valued function u defined on VG, we define its
norm by

(2) ||u||p = |u(o)|+ Ip(u, VG)
1/p,

where o is a fixed vertex of VG. Let us denote BDp(G) to be the set of all
bounded energy finite functions with the norm (2). We denote by BDp,0(G)
the closure of the set of all finitely supported functions in BDp(G). The subset
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of all p-harmonic functions in BDp(G) is denoted by HBDp(G). Yamasaki [3]
proved the discrete analogue of the Royden decomposition theorem as follows:

Proposition 2.3. For every f ∈ BDp(G), there exist a unique h ∈ HBDp(G)
and a unique g ∈ BDp,0(G) such that f = h+ g.

3. Maximum principle and comparison principle

Let us begin with defining p-harmonic boundary of a graph G as follows: For
an infinite connected graph G, there exists a unique (up to homeomorphism)

compact Hausdorff space Ĝ, called the Royden p-compactification of G, which
contains G as an open dense subset, every function in BDp(G) can be continu-

ously extended to Ĝ and the class of such extended functions separates points
in Ĝ. The Royden p-boundary of Ĝ is the set Ĝ \G and denoted by ∂Ĝ. The

p-harmonic boundary ∆p,G of G is the subset of the Royden p-boundary ∂Ĝ,
defined by

∆p,G = {x ∈ ∂Ĝ : f(x) = 0 for all f ∈ BDp,0(G)}.

In particular, for each subset S of VG, Ŝ denotes the closure of S in Ĝ and Sd

denotes the double of S, which is obtained by identifying the interior boundaries
of two copies of S, respectively.

Whether the closure of a subset of Ĝ intersects or not the p-harmonic bound-
ary of G implies how large the set of bounded energy finite functions on the
subset is as follows:

Lemma 3.1. Let Ω be a subset of VG such that Ω̂ ∩ ∆p,G = ∅. Then 1 ∈
BDp,0(Ω

d).

Proof. We claim that there exists a function w ∈ BDp,0(G) such that w >

1 on Ω̂. First of all, for each z ∈ Ω̂ ∩ ∂Ĝ, since z /∈ ∆p,G, there exists a
function fz ∈ BDp,0(G) such that fz(z) 6= 0. Let us define a function wz on

Ĝ by wz(x) = 2|fz(x)|/|fz(z)|. Then clearly, wz is a nonnegative function in

BDp,0(G) satisfying wz(z) = 2. From the compactness of Ω̂ ∩ ∂Ĝ, there exist

finitely many points z1, z2, . . . , zk in Ω̂ ∩ ∂Ĝ such that

Ω̂ ∩ ∂Ĝ ⊂
k
⋃

j=1

{x ∈ Ĝ : wzj (x) > 1}.

Next, for each z ∈ Ω̂\∪k
j=1{x ∈ Ĝ : wzj (x) > 1}, define a function wz ∈ BDp(G)

such that wz is p-harmonic on N3(z) \ N1(z), wz = 2 on N1(z), and wz = 0
on G \ N3(z). Then wz ∈ BDp,0(G), since it is finitely supported. From the

compactness of Ω̂ \ ∪k
j=1{x ∈ Ĝ : wzj (x) > 1}, there exist finitely many points

zk+1, zk+2, . . . , zk+m in Ω̂ \ ∪k
j=1{x ∈ Ĝ : wzj (x) > 1} such that

(

Ω̂ \
k
⋃

j=1

{x ∈ Ĝ : wzj (x) > 1}
)

⊂
k+m
⋃

j=k+1

{x ∈ Ĝ : wzj (x) > 1}.
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Therefore, we have w =
∑k+m

j=1 wzj ∈ BDp,0(G) such that w > 1 on Ω̂, hence
the claim.

Now choose a sequence {gn} of finitely supported functions converging to w
in BDp(G). Symmetrically extend w and gn to Ωd, denoted again by w and gn,
respectively. Clearly, each gn is finitely supported on Ωd, and {gn} converges to
w in BDp(Ω

d). Therefore, w ∈ BDp,0(Ω
d) and w > 1 on Ωd. Since BDp,0(Ω

d)
is an ideal of BDp(Ω

d), we have 1 = (1/w)w ∈ BDp,0(Ω
d). �

We say that a connected infinite subset Ω of VG is Dp-massive if there exists
a nonnegative function u on VG such that u is p-harmonic on Ω, u = 0 on
VG \ Ω, supVG

u = 1, and Ip(u,Ω) < ∞. Such a function u is called an inner
potential of the Dp-massive set Ω.

We are ready to prove the maximum principle:

Theorem 3.2 (Maximum principle). Let G be a graph of bounded degree and

h ∈ HBDp(G) such that a ≤ h ≤ b on ∆p,G for some constants a and b. Then

we have a ≤ h ≤ b on VG.

Proof. We first claim that h ≤ b on VG. Otherwise, there exist constants c and
c1 such that b < c1 < c < M , where M = supVG

h. Let Ωc be a component
of the set {x ∈ VG : h(x) > c} with supΩc

h = M . Then VG \ Ωc is nonempty
from the continuity of h and the fact that h ≤ b on ∆p,G.

Now construct a sequence of nonnegative functions ur on VG such that






∆pur = 0 on Ωc ∩Nr(o);
ur = (h− c)/(M − c) on Ωc \Nr(o);
ur = 0 on VG \ Ωc,

where M = supVG
h. Then since ur ≥ (h − c)/(M − c) on (∂Ωc ∩Nr+1(o)) ∪

(Ωc ∩ ∂Nr(o)), by Proposition 2.1,

ur ≥ (h− c)/(M − c) on Ωc ∩Nr(o).

On the other hand,

(

∑

x∈Ωc∩Nr(o)

|Dur|
p(x)

)1/p

≤
(

∑

x∈Ωc∩Nr(o)

|D((h− c)/(M − c))|p(x)
)1/p

≤
1

M − c

(

∑

x∈VG

|Dh|p(x)
)1/p

.

Thus there exists a subsequence {urk} converging to a nonnegative function u
on VG such that u is p-harmonic on Ωc, u = 0 on VG \ Ωc, supVG

u = 1, and
Ip(u,Ωc) < ∞. This implies that Ωc is Dp-massive with an inner potential u.

Let Oǫ = {x ∈ Ωc : u(x) > 1 − ǫ} for 0 < ǫ < 1. Then by Proposition 2.2,
there exists a sufficiently small ǫ > 0 such that

d(∂Ωc, Oǫ) ≥ 2.
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LetDǫ be a component of the set {x ∈ Ωc : (h(x)−c)/(M−c) > 1−ǫ} such that
supDǫ

h = M . Then Oǫ ⊃ Dǫ. On the other hand, since u ≥ (h − c)/(M − c)
on Ωc, we have

d(∂Ωc, Dǫ) ≥ 2.

Let Ω = {x ∈ VG : h(x) > c1}, then Ω̂∩∆p,G = ∅. Thus by Lemma 3.1, there
exists a sequence {φn} of finitely supported nonnegative functions converging
to 1 in BDp(Ω

d). Let v = max{h− c, 0}, then v = h− c on Ωc. In particular,
since d(∂Ωc, Dǫ) ≥ 2, Dǫ ∪ ∂Dǫ ⊂ Ωc. Hence, v = h − c on Dǫ ∪ ∂Dǫ. On
the other hand, the function vφn vanishes on VG \ (Ω ∩Kn), where Kn is the
support of φn in Ωd, and {vφn} converges to v with the norm

||f ||p = |f(x0)|+
(

∑

x∈Dǫ

|Df |p(x)
)1/p

,

where x0 is a fixed point in Dǫ. Thus we get
∑

x∈Dǫ

∑

y∼x

|h(y)− h(x)|p

=
∑

x∈Dǫ

∑

y∼x

|h(y)− h(x)|p−2(h(y)− h(x))(h(y) − h(x))

=
∑

x∈Dǫ

∑

y∼x

|h(y)− h(x)|p−2(h(y)− h(x))(v(y) − v(x))

= lim
n→∞

(

∑

x∈Dǫ

∑

y∼x

|h(y)− h(x)|p−2(h(y)− h(x))((vφn)(y)− (vφn)(x))
)

= 0.

Therefore, h is constant on Dǫ such that h ≡ M onDǫ. From the p-harmonicity
of h and the connectedness of Ωc, we have h ≡ M on Ωc. Also, from the p-
harmonicity of h and the connectedness, we conclude that h ≡ M on ∂Ωc.
However, this is impossible since h ≤ c on ∂Ωc. Consequently, we have the
claim that h ≤ b on VG.

Similarly arguing, we get the remains. �

By using the maximum principle, we can give a duality relation between
BDp,0(G) and ∆p,G as follows:

Proposition 3.3. BDp,0(G) = {f ∈ BDp(G) : f = 0 on ∆p,G}.

Proof. Suppose that f ∈ BDp(G) with f |∆p,G
= 0. By Proposition 2.3, there

exist h ∈ HBDp(G) and g ∈ BDp,0(G) such that f = h+ g. Since g|∆p,G
= 0,

h|∆p,G
= 0. By the maximum principle, we have h ≡ 0 on VG, hence f = g ∈

BDp,0(G). �

By modifying the program of Holopainen and Soardi [1] and applying the du-
ality relation Proposition 3.3, we prove the comparison principle for p-harmonic
functions in terms of p-harmonic boundary as follows:
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Theorem 3.4 (Comparison principle). Let G be a graph of bounded degree and

u, v ∈ HBDp(G) such that v ≤ u on ∆p,G. Then we have v ≤ u on VG.

Proof. Let U+ = {x ∈ VG : v(x) ≤ u(x)} and U− = {x ∈ VG : v(x) > u(x)}.
For each vertex x ∈ VG, we set U+

x = {y ∼ x : v(y) ≤ u(y)} and U−

x = {y ∼
x : v(y) > u(y)}.

Let η = max{v − u, 0}. Then η ≥ 0 on VG, η = 0 on ∆p,G, and η(y) = 0 for
all y ∈ U+ and y ∈ U+

x . By Proposition 3.3, we have η ∈ BDp,0(G), hence we
get

0 =
∑

x∈VG

∑

y∼x

(T (v, η;x, y)− T (u, η;x, y))

= I + II + III,

where

I =
∑

x∈U+

∑

y∈U+
x

(T (v, η;x, y)− T (u, η;x, y)),

II =
∑

x∈U+

∑

y∈U−

x

(T (v, η;x, y)− T (u, η;x, y))

+
∑

x∈U−

∑

y∈U+
x

(T (v, η;x, y)− T (u, η;x, y)),

III =
∑

x∈U−

∑

y∈U−

x

(T (v, η;x, y)− T (u, η;x, y)).

First of all, we have I = 0 since η(y) = 0 for all y ∈ U+ and y ∈ U+
x . Secondly,

by (1) we get III ≥ 0 since η = v − u on U− or on U−

x .
We claim that if there exists at least one pair x, y such that x ∈ U+ and

y ∈ U−

x , or x ∈ U− and y ∈ U+
x , then II > 0. However, since 0 = I+ II+ III,

it is impossible. Thus for any pair x, y with y ∼ x,

either v(x) ≤ u(x), v(y) ≤ u(y) or v(x) > u(x), v(y) > u(y).

If for any pair x, y with y ∼ x, v(x) > u(x), v(y) > u(y), then since G is
connected, v > u on VG. Let w = v − u. Then w > 0 on VG, hence w ≥ 0 on
∆p,G. On the other hand, since w ≤ 0 on ∆p,G from the hypothesis, we have
w = 0 on ∆p,G. By Proposition 3.3, we have w ∈ BDp,0(G), hence we get

0 =
∑

x∈VG

∑

y∼x

(T (v, w;x, y)− T (u,w;x, y)).

By (1), this implies that v − u ≡ c on VG for some constant c. Since v ≤ u
on ∆p,G, we conclude that c ≤ 0. However, this is a contradiction to the
fact that v > u on VG. Therefore, for any pair x, y with y ∼ x, we have
v(x) ≤ u(x), v(y) ≤ u(y), hence we have the consequence v ≤ u on VG.

We now prove the claim. Suppose that there exists a pair x, y such that
x ∈ U+ and y ∈ U−

x . Then by the definition of η, we have η(y) − η(x) =
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v(y)− u(y) > 0. Since

T (v, η;x, y)− T (u, η;x, y)

= (v(y)− u(y))(|v(y) − v(x)|p−2(v(y)− v(x)) − |u(y)− u(x)|p−2(u(y)− u(x))),

we have only to prove that

|v(y)− v(x)|p−2(v(y) − v(x)) − |u(y)− u(x)|p−2(u(y)− u(x)) > 0.

Since v(y) − u(y) > 0 ≥ v(x) − u(x), we have v(y) − v(x) > u(y) − u(x). If
u(y)− u(x) ≥ 0, then

|v(y)− v(x)|p−2(v(y)− v(x)) − |u(y)− u(x)|p−2(u(y)− u(x))

= (v(y)− v(x))p−1 − (u(y)− u(x))p−1 > 0.

In the case that u(y)− u(x) < 0 and v(y)− v(x) > 0, we have

|v(y)− v(x)|p−2(v(y)− v(x)) − |u(y)− u(x)|p−2(u(y)− u(x))

= |v(y)− v(x)|p−1 + |u(y)− u(x)|p−1 > 0.

In the other case u(y)− u(x) < 0 and v(y)− v(x) ≤ 0, we have |v(y)− v(x)| <
|u(y)− u(x)|. Hence

|v(y)− v(x)|p−2(v(y)− v(x)) − |u(y)− u(x)|p−2(u(y)− u(x))

= − |v(y)− v(x)|p−1 + |u(y)− u(x)|p−1 > 0.

Similarly arguing as above, for any pair x, y such that x ∈ U− and y ∈ U+
x ,

we have

T (v, η;x, y)− T (u, η;x, y)

= − (v(x)−u(x))(|v(y)−v(x)|p−2(v(y)−v(x))−|u(y)−u(x)|p−2(u(y)−u(x)))

> 0.

Therefore, we have the claim. �

As an application of the comparison principle, we prove the solvability of
the boundary value problem of p-harmonic functions in terms of p-harmonic
boundary of graphs as follows:

Theorem 3.5. Let G be a graph of bounded degree. Then for any continuous

function f on ∆p,G, there exists a unique p-harmonic function h, which is a

limit of a sequence of functions in HBDp(G) in the sense of supremum norm,

such that

(3) h(x) = f(x)

for all x ∈ ∆p,G.
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Proof. Let f : ∆p,G → R be a continuous function. Then there is a sequence
{fn} in BDp(G) such that

(4) lim
n→∞

sup
VG

|fn − f̂ | = 0,

where f̂ = limn→∞ fn and f̂ |∆p,G
= f . For each n ∈ N, define a continuous

function hn,r on VG such that
{

∆phn,r = 0 on Nr(o);
hn,r = fn on VG \Nr(o).

Obviously, hn,r ∈ BDp(G) and |hn,r| ≤ supVG
|fn| on VG. Thus there exists a

subsequence {hn,rk} converging uniformly to a limit function hn on any finite
subset of VG. In particular, hn is a p-harmonic function and {hn,rk} converges
to hn in BDp(G). Hence hn ∈ HBDp(G), and by Proposition 2.3, there exists
a unique gn ∈ BDp,0(G) such that fn = hn + gn.

On the other hand, from (4), for any given ǫ > 0, there is N ∈ N such that
if n,m ≥ N ,

sup
VG

|fn − fm| < ǫ,

hence

sup
∂Nr(o)

|hn,r − hm,r| < ǫ

for all r ∈ N. Then by Proposition 2.1, we get

sup
Nr(o)

|hn,r − hm,r| < ǫ

for all r > 0. This yields

sup
S

|hn − hm| < 3ǫ

for any finite subset S of VG, hence

sup
M

|hn − hm| ≤ 3ǫ.

Therefore, {hn} converges uniformly to a limit function h on VG and h is p-
harmonic on VG.

Now for given ǫ > 0, choose N ∈ N such that for all n ≥ N ,

sup
VG

|fn − f̂ | < ǫ and sup
VG

|hn − h| < ǫ.

Since hn ≡ fn on ∆p,G and ǫ > 0 is arbitrarily chosen, we have

h(x) = f(x)

for all x ∈ ∆p,G.

Suppose that h and h̃ are p-harmonic functions satisfying (3), and {hn} and

{h̃n} are sequences in HBDp(G) such that

lim
n→∞

sup
VG

|hn − h| = 0 and lim
n→∞

sup
VG

|h̃n − h̃| = 0.
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Then for any ǫ > 0, there is an N ∈ N such that for any n ≥ N ,

(5) sup
VG

|hn − h| < ǫ and sup
VG

|h̃n − h̃| < ǫ.

Since h(x) = f(x) = h̃(x) for all x ∈ ∆p,G, we have for any n ≥ N ,

h̃n(x)− 2ǫ < hn(x) < h̃n(x) + 2ǫ

for all x ∈ ∆p,G. By Theorem 3.2,

h̃n − 2ǫ < hn < h̃n + 2ǫ on VG.

From (5), we have

sup
VG

|h− h̃| < 4ǫ.

Since ǫ > 0 is arbitrarily chosen, we have h = h̃ on VG. �
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