• Title/Summary/Keyword: p-STAT-1

Search Result 156, Processing Time 0.027 seconds

Increase of Cell Concentration by the Automatic Addition of Glucose and Ammonium to an Alcohol distillery Wastewater Reutilized for Cultivating a Baker's Yeast : Automatic Addition of Ammonium with pH-stat (알콜증류폐액을 이용한 빵효모배양에서 Glucose와 Ammonium의 자동첨가에 의한 종균 : pH-stat 방법에 의한 Ammonium의 자동첨가)

  • 이형춘
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.134-138
    • /
    • 2000
  • Addition of carbon and nitrogen source to an alcohol distillery wastewater was tried to increase the cell concentration of a b baker's yeast cultivated in that wastewater. Carbon was found to be primary limiting nutrient and nitrogen secondary limiting o one. Glucose addition increased the cell concentration 1.3 times higher than no addition, and both glucose and $(NH_4)_2S0_4$ a addition did 5.8 times. A fed-batch cultivation by the automatic addition of glucose and ammonium was executed. Added g glu$\infty$se was automatically controlled to low concentration by a method using DO as control parameter. Ammonium was a automatically added as NH40H used as pH $\infty$ntrol agent after initiating glucose addition. By this simple cultivation method t the cell concentration $\infty$내d be efficiently increased from 2.6g/L to 12.0g/L, and maximum specific growth rate and biomass y yield to glu$\infty$se were $0.18hr^{-1}$ and about 0.54g/g respectively. By increasing cell concentration, COD of the wastewater m media could be additionally reduced by about 22%.

  • PDF

Immunomodulatory Effects of phellinus linteus Extracts on Liver Damage Induced by Carbon Tetrachloride in Rats. (상황버섯 추출물이 사염화탄소로 간 손상이 유발된 흰쥐에서의 면역조절 효과)

  • An, Chi-Sun;Choi, Se-Young;Jin, Hai-Lan;Jeon, Yun-Hui;Hur, Sun-Jin;Kim, Ick-Hee;Park, Geum-Duck;Jeoung, Young-Jun;Lim, Beong-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • The purpose of this study evaluated the immunoregulatory effect of phellinus linteus ethanol (PLE) extracts on liver damage on carbon tetrachloride ($CCl_4$) induced in rats. Four-week old Male Sprague-Dawley rats were divided into the three experimental groups randomly; Control group, $CCl_4$ group, $CCl_4$ + PLE group. We found that effect of PLE on $IFN-\gamma$, STAT1 and pSTAT1 was decrease in vivo. Several genes were demonstrated to be IL-4 inducible prior to the discovery of STAT6. IL-4, STAT6 and pSTAT6 decreased significantly lower in $CCl_4$ + PLE than the $CCl_4$ group. Our data indicated that cytokine protein production were increased in $CCl_4$ group with $CCl_4$ + PLE group. In our data indicate that IgA levels in MLN lymphocytes were low, while IgE was high in $CCl_4$ + PLE group compared with $CCl_4$ group. Therefore, the results of this study show that PLE can be proposed to protect the liver against $CCl_4$-induced immunoregulatory activity in rats.

Effect of acupuncture treatment on carrageenan-induced inflammation and NADPH-diaphorase reactivity in the hypothalamus of Stat4 knockout mice (Carrageenan 염증 유도된 Stat 4 유전자 제거생쥐의 시상하부에서 NADPH-diaphorase 반응에 대한 침의 영향)

  • Hong, Mee-Suk;Kim, Mi-Ja;Kim, Jin-Ju;Park, Hi-Joon;Chung, Joo-Ho
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • 목 적 : 본 연구의 목적은 시상하부에서 침처치에 대한 nitric oxide synthase (NOS)발현을 nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)를 이용한 조직화학 염색법으로 관찰하였다. 실험방법 : 동물은 Balb/c (wild type) 와 Stat 4 knockout (KO) 생쥐를 사용하였다. 염증유도는 1% carrageenan 용액 (20ul/마리)을 발 뒤꿈치 표피에 주사하였고, 침 처치는 족삼리 (ST36)에 시침하였다. 침 처치 후 5시간까지 부종율을 부종측정기로 측정하였으며, 마지막으로 부종을 측정한 후 동물을 희생하여 뇌를 적출하여 고정하였다. 침에 대한 효과를 확인하기 위하여 NADPH-d 반응의 조직염색을 실시하였다. 염증유도와 그룹간의 유의성 검증은 one-way ANOVA를 사용하였다. 결 과 : 대조군인 Balb/c와 실험군인 stat4 KO 생쥐를 carrageenan으로 염증을 유도시에 대조군은 90%이상 유도된 반면, Stat4 KO 그룹은 50% 정도의 염증만이 유도되었다. 염증을 유도한 생쥐의 족삼리에 침 처치시 대조군은 1시간에서 약 40%정도 감소하였고 (P<0.05), Stat4 KO 실험군은 유의한 염증 감소율을 보이지 않았다. 시상하부의 lateral hypothalamic area (LHA)와 paraventricular nucleus (PVN)부위의 침에 대한 효과를 NADPH-d 에 양성으로 반응하는 세포수로 비교하여 다음과 같은 결과를 얻었다. (1) 대조군에서 염증 유도시 시상하부의 PVN는 NADPH-d 양성세포수가 감소하였고, LHA에서는 증가하였다. (2) 염증을 유도한 대조군에 침을 처치시 PVN은 세포수가 증가하였고, LHA에서는 감소하는 경향을 보였다. (3) 염증을 유도한 Stat4 KO 군에서는 시상하부의 PVN과 LHA부위 모두에서 NADPH-d 양성세포수가 감소하였고, 염증유도그룹에 침을 처치시 PVN과 LHA부위 모두에서 세포수가 증가함을 관찰 할 수 있었다. (4) 대조군과 실험군 모두에 salicylic acid로 비교하였더니 염증유도 효과 및 NADPH-d 세포 수에서 침 처치와 비슷한 결과를 나타내었다. 결 론 : 침은 염증을 유도한 생쥐에서 염증 감소에 유의한 효과가 있다. 염증을 유도한 Balb/c 와 Stat4 KO 생쥐에 침을 처치 시 시상하부의 NADPH-d 발현이 LHA부위와 PVN에서 서로 다르게 나타나는 것으로 나타난다. 이러한 현상은 침 효과가 시상하부의 위치에 대한 작용이 다르기 때문이라고 생각된다.

  • PDF

A Study on the Effect of Liriopis tuber water extract on Hydrogen Peroxide-stimulated C6 Astrocyte Cells (과산화수소 자극으로 활성화된 C6 성상교세포에 대한 맥문동추출물의 조절 효능 연구)

  • Park, Ki Ho;Kang, Seok Yong;Jung, Hyo Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.35 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Objective : To identify the effects of the water extract of Liriope platyphylla tuber (Liriopis tuber, LT) on the activation of astocytes, we investigated the regulatory effects of LT extract on H2O2-induced oxidative damage in C6 rat astrocytes. Methods : LT extract was extracted with boiling water. C6 cell line were treated with LT extract at 1, 2, and 3 mg/㎖ or without for 30 min and then stimulated with H2O2 at 5 ㎛ for 24 hr. The cell viability was measured by MTT assay. The expression of glial fibrillary acidic protein (GFAP), signal transducer and activator of transcription 3 (STAT3), phospho-STAT3 (pSTAT3), cyclooxygenase (COX-2), Nuclear factor-κB (NF-κB), superoxide dismutase 2 (SOD2), heme oxygenase-1 (HO-1), catalase, Akt, phospho-Akt (p-Akt) phosphoinositide 3-kinases (PI3K), and protein kinase C alpha (PKCα) proteins were determined by Western blot, respectively. GFAP expression was also observed with immunocytochemistry under a fluorescence microscope. Results : LT extract induced cell proliferation in H2O2-stimulated C6 cells. LT extract significantly inhibited the expression of GFAP, NF-κB and COX-2 and increased the expression of HO-1 and the phosphorylation of STAT3 in H2O2-stimulated C6 cells. LT extract also significantly increased the phosphorylation of Akt and decreased the expression of PKCα in a dose-dependent manner in H2O2-stimulated C6 cells. Conclusions : LT extract can regulate H2O2-induced activation of astrocytes through inhibiting the expression of NF-κB, COX-2 and regulating Akt / HO-1, STAT3 or PKCα signaling pathway.

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

Molecular Mechanism of NO-induced Cell Death of PC12 Cells by $IFN{\gamma}\;and\;TNF{\alpha}$

  • Yi, Seh-Yoon;Han, Seon-Kyu;Lee, Jee-Yeon;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • Nitric oxide (NO) is a small, diffusible, and highly reactive molecule, which plays dichotomous regulatory roles under physiological and pathological conditions. NO promotes apoptosis in some cells, and inhibits apoptosis in other cells. In the present study, we attempted to characterize the NO signaling pathway and cellular response in PC12 cells treated with cytokines. $IFN{\gamma}\;and\;TNF{\alpha}$ treatment resulted in a synergistic increase of nitrite accumulation, with the induction of inducible nitric oxide synthase (iNOS) in the PC12 cells. Moreover, as nitrite concentration increased, cell viability decreased. In order to explore MAP kinase involvement in nitric oxide production resultant from $IFN{\gamma}\;and\;TNF{\alpha}$ stimulation, we measured the activation of MAP kinase using specific MAP kinase inhibitors. PC12 cells pretreated with SB203580, a p38 MAP kinase-specific inhibitor, resulted in the inhibition of iNOS expression and NO production. However, PD98059, an ERK/MAP kinase-specific inhibitor, was not observed to exert such an effect. In addition, Stat1 activated by $IFN{\gamma}\;and\;TNF{\alpha}$ was interacted with p38 MAPK. These data suggest that p38 MAP kinase mediates cytokine-mediated iNOS expression in the PC12 cells, and Jak/Stat pathway interferes with p38 MAPK signaling pathway.

Association of Single Nucleotide Polymorphism rs1053004 in Signal Transducer and Activator of Transcription 3 (STAT3) with Susceptibility to Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B

  • Chanthra, Nawin;Payungporn, Sunchai;Chuaypen, Natthaya;Pinjaroen, Nutcha;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5069-5073
    • /
    • 2015
  • The single nucleotide polymorphism (SNP) rs1053004 in Signal transducer and activator of transcription 3 (STAT3) was recently reported to be associated with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) in a Chinese cohort. This study was aimed at investigating whether the SNP might also contribute to HCC susceptibility in the Thai population. Study subjects were enrolled and divided into 3 groups including CHB-related HCC (n=211), CHB without HCC (n=233) and healthy controls (n=206). The SNP was genotyped using allelic discrimination assays based on TaqMan real-time PCR. Data analysis revealed that the distribution of different genotypes was in Hardy-Weinberg equilibrium (P>0.05). The frequencies of allele T (major allele) in HCC patients, CHB patients and healthy controls were 51.4%, 58.6% and 61.4%, respectively, whereas the frequencies of C allele (minor allele) were 48.6%, 41.4% and 38.6%. The C allele frequency was higher in HCC when compared with CHB patients (odds ratio (OR)=1.34, 95% confidence interval (CI)=1.02-1.74, P=0.032). The genotype of SNP rs1053004 (CC versus TT+TC) was significantly associated with an increased risk when compared with CHB patients (OR=1.83, 95% CI=1.13-2.99, P=0.015). In addition, we observed a similar trend of association when comparing HCC patients with healthy controls (OR=1.77, 95% CI=1.07-2.93, P=0.025) and all controls (OR=1.81, 95% CI=1.19-2.74, P=0.005). These findings suggest that the SNP rs1053004 in STAT3 might contribute to HCC susceptibility and could be used as a genetic marker for HCC in the Thai population.

Prunus Yedoensis Inhibits the Inflammatory Chemokines, MDC and TARC, by Regulating the STAT1-Signaling Pathway in IFN-γ-stimulated HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin;Lee, Hye-Ja;Yoon, Weon-Jong;Yang, Eun-Jin;Park, Sun-Son;Kang, Hee-Kyoung;Park, Myung-Hwan;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.394-402
    • /
    • 2008
  • Atopic dermatitis (AD) is an inflammatory skin disease commonly characterized by infiltration of inflammatory cells into skin lesions. Keratinocytes produce many chemokines that are involved in the pathogenesis of skin disorders. In particular, macrophage-derived chemokine (MDC/CCL22) and thymus and activationregulated chemokine (TARC/CCL17) are Th2-type cytokines. Serum MDC and TARC levels are increased in AD patients. In this study, we investigated the anti-inflammatory effect and mechanism of action of the active fraction from Prunus yedoensis bark. We evaluated their inhibitory effects on the AD-like inflammatory markers (MDC and TARC) and JAK-STAT pathway (STAT1) in HaCaT keratinocytes. The EtOAc fraction of the crude extract (80% EtOH) and the E5 sub-fraction potently inhibited the induction of MDC and TARC mRNA and protein at 50 ${\mu}g$/mL in HaCaT cells. In addition, the E5 sub-fraction inhibited the phosphorylation of STAT1 protein associated with IFN-$\gamma$ signaling transduction in a dose-dependent manner. Thus, P. yedoensis may have antiatopic activity by suppressing the inflammatory chemokines (MDC and TARC).

Hydroxyzine Induces Cell Death in Triple-Negative Breast Cancer Cells via Mitochondrial Superoxide and Modulation of Jak2/STAT3 Signaling

  • Shakya, Rajina;Park, Gyu Hwan;Joo, Sang Hoon;Shim, Jung-Hyun;Choi, Joon-Seok
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2022
  • Treatment of triple-negative breast cancer (TNBC) has been limited due to the lack of molecular targets. In this study, we evaluated the cytotoxicity of hydroxyzine, a histamine H1 receptor antagonist in human triple-negative breast cancer BT-20 and HCC-70 cells. Hydroxyzine inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay showed that hydroxyzine induced apoptosis. The hydroxyzine-induced apoptosis was accompanied down-regulation of cyclins and CDKs, as well as the generation of reactive oxygen species (ROS) without cell cycle arrest. The effect of hydroxyzine on the induction of ROS and apoptosis on TNBC cells was prevented by pre-treatment with ROS scavengers, N-acetyl cysteine or Mito-TEMPO, a mitochondria-targeted antioxidant, indicating that an increase in the generation of ROS mediated the apoptosis induced by hydroxyzine. Western blot analysis showed that hydroxyzine-induced apoptosis was through down-regulation of the phosphorylation of JAK2 and STAT3 by hydroxyzine treatment. In addition, hydroxyzine induced the phosphorylation of JNK and p38 MAPK. Our results indicate that hydroxyzine induced apoptosis via mitochondrial superoxide generation and the suppression of JAK2/STAT3 signaling.

Silencing of Suppressor of Cytokine Signaling-3 due to Methylation Results in Phosphorylation of STAT3 in Imatinib Resistant BCR-ABL Positive Chronic Myeloid Leukemia Cells

  • Al-Jamal, Hamid AN;Jusoh, Siti Asmaa Mat;Yong, Ang Cheng;Asan, Jamaruddin Mat;Hassan, Rosline;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4555-4561
    • /
    • 2014
  • Background: Silencing due to methylation of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator gene for the JAK/STAT signaling pathway has been reported to play important roles in leukemogenesis. Imatinib mesylate is a tyrosine kinase inhibitor that specifically targets the BCR-ABL protein and induces hematological remission in patients with chronic myeloid leukemia (CML). Unfortunately, the majority of CML patients treated with imatinib develop resistance under prolonged therapy. We here investigated the methylation profile of SOCS-3 gene and its downstream effects in a BCR-ABL positive CML cells resistant to imatinib. Materials and Methods: BCR-ABL positive CML cells resistant to imatinib (K562-R) were developed by overexposure of K562 cell lines to the drug. Cytotoxicity was determined by MTS assays and $IC_{50}$ values calculated. Apoptosis assays were performed using annexin V-FITC binding assays and analyzed by flow cytometry. Methylation profiles were investigated using methylation specific PCR and sequencing analysis of SOCS-1 and SOCS-3 genes. Gene expression was assessed by quantitative real-time PCR, and protein expression and phosphorylation of STAT1, 2 and 3 were examined by Western blotting. Results: The $IC_{50}$ for imatinib on K562 was 362nM compared to 3,952nM for K562-R (p=0.001). Percentage of apoptotic cells in K562 increased upto 50% by increasing the concentration of imatinib, in contrast to only 20% in K562-R (p<0.001). A change from non-methylation of the SOCS-3 gene in K562 to complete methylation in K562-R was observed. Gene expression revealed down-regulation of both SOCS-1 and SOCS-3 genes in resistant cells. STAT3 was phosphorylated in K562-R but not K562. Conclusions: Development of cells resistant to imatinib is feasible by overexposure of the drug to the cells. Activation of STAT3 protein leads to uncontrolled cell proliferation in imatinib resistant BCR-ABL due to DNA methylation of the SOCS-3 gene. Thus SOCS-3 provides a suitable candidate for mechanisms underlying the development of imatinib resistant in CML patients.