• Title/Summary/Keyword: p-38 mitogen-activated protein kinase

Search Result 399, Processing Time 0.028 seconds

Immunostimulatory effects of the Pueraria lobata flower extract via MAPK signaling in RAW264.7 cells

  • Kim, Ki-tae
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.52-63
    • /
    • 2020
  • Objectives: In this study, we investigated the effects of Pueraria lobata Ohwi flower extracts (PLFE) on macrophages and their underlying mechanism(s) of action. PLFE increased the production of NO and cytokines (IL-6 and TNF-𝛼) in a dose-dependent manner, indicating its immunostimulatory property. Furthermore, PLFE upregulated iNOS, COX-2, and mitogen-activated protein kinase (MAPK) signaling in RAW264.7 cells. Additionally, PLFE enhanced the phosphorylation of I𝜅B𝛼 and subsequent I𝜅B𝛼 degradation, thereby enabling the nuclear translocation of NF-𝜅B. Taken together, these findings demonstrate that the immunostimulatory effects of PLFE are mediated by the nuclear translocation of the p65 subunit of NF-𝜅B and subsequent secretion of cytokines (IL-6 and TNF-𝛼), upregulation of iNOS and COX-2, and stimulation of MAPK signaling (JNK, ERK, and p38). Thus, PLFE may be a potential immunostimulatory therapeutic.

Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages

  • Kim, Ba Reum;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.308-313
    • /
    • 2018
  • Small-molecule inhibitors are widely used to treat a variety of inflammatory diseases. In this study, we found a novel anti-inflammatory compound, 1-[(2R,4S)-2-methyl-4-(phenylamino)-1,2,3,4-tetrahydroquinolin-1-yl]prop-2-en-1-one (MPQP). It showed strong anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. These effects were exerted through the inhibition of the production of NO and pro-inflammatory cytokines, such as interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Furthermore, MPQP decreased the expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Additionally, it mediated the inhibition of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), the inhibitor of ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$), and their upstream kinases, $I{\kappa}B$ kinase (IKK) ${\alpha}/{\beta}$, mitogen-activated protein kinase kinase (MKK) 3/6, and MKK4. Furthermore, the expression of IL-1 receptor-associated kinase 1 (IRAK1) that regulates $NF-{\kappa}B$, p38, and the JNK signaling pathways, was also increased by MPQP. These results indicate that MPQP regulates the IRAK1-mediated inflammatory signaling pathways by targeting IRAK1 or its upstream factors.

Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes

  • Ananda Baral;Pil-Hoon Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.611-626
    • /
    • 2024
  • Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

Inhibitory Mechanism of Curcumin in Osteoclast Differentiation (파골세포의 분화에 커규민의 억제 작용기전)

  • Kwak, Han-Bok;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.796-801
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Studies of Anti-inflammation of Liriopis Tuber to Autoimmunune Diabetes in NOD Mice (NOD 당뇨병 생쥐에 미치는 맥문동의 항염증 효과)

  • Roh, Seong-Soo;Choi, Hak-Joo;Kim, Dong-Hee;Seo, Young-Bae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.766-770
    • /
    • 2008
  • Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

Anti-inflammatory effect of ganodermanondiol from Ganoderma lucidumon RAW 264.7 cells (영지 유래 가노더마논디올의 RAW 264.7 세포주에 대한 항염 효과)

  • Che-Hwon Park;Ju-Hyeon Shin;Young-Jin Park
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.215-221
    • /
    • 2023
  • Owing to its diverse range of bioactive compounds, Ganoderma lucidumhas garnered significant research attention for health promotion and disease prevention. Ganodermanondiol, which has a triterpenoid structure, is one of the major active compounds of G. lucidum. In the present study, the anti-inflammatory effects of ganodermanondiol were investigated to evaluate its usefulness as a functional ingredient. Ganodermanondiol (0.5-2 ㎍/mL) significantly inhibited the production of nitric oxide (NO), the expression of the cytokines tumor necrosis factor (TNF)??and interleukin 6 (IL-6), and the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in lipopolysaccharide-induced RAW 264.7 (murine macrophage) cells. Ganodermanondiol (0.5-2 ㎍/mL) also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including p38 and c-Jun N-terminal protein kinase (JNK) in RAW 264.7 cells. Ganodermanondiol significantly inhibited the essential factors involved in the inflammatory responses of RAW 264.7 cells and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases.

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.581-588
    • /
    • 2016
  • Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.

Effect of Kainic Acid on the Phosphorylation of Mitogen Activated Protein Kinases in Rat Hippocampus

  • Won, Je-Seong;Lee, Jin-Koo;Choi, Seong-Soo;Song, Dong-Keun;Huh, Sung-Oh;Kim, Yung-Hi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.451-456
    • /
    • 2001
  • In rat hippocampus, kainic acid (KA; 10 mg/kg; i.p.) increased the phosphorylated forms of ERK1/2 (p-ERK1/2) and Jun kinase1 (p-JNK1), but not p-JNK2 and p38 (p-p38). The preadministration with cycloheximide (CHX; 5 mg/kg; i.p.) inhibited KA-induced increase of p-JNK1, but not p-ERK1/2. Surprisingly, the phosphorylated upstream MAP kinase kinases (p-MKKs) were not correlated with their downstream MAP kinases. The basal p-MKK1/2 levels were completely abolished by KA, which were reversed by CHX. In addition, p-MKK4 and p-MKK3/6 levels were enhanced by CHX alone, but were attenuated by KA. Thus, our results showed that KA increased the p-ERK and p-JNK levels in rat hippocampus, which were not parallel with their classical upstreamal kinases.

  • PDF