Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.141

Lonchocarpine Increases Nrf2/ARE-Mediated Antioxidant Enzyme Expression by Modulating AMPK and MAPK Signaling in Brain Astrocytes  

Jeong, Yeon-Hui (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine)
Park, Jin-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine)
Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University)
Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University, School of Medicine)
Publication Information
Biomolecules & Therapeutics / v.24, no.6, 2016 , pp. 581-588 More about this Journal
Abstract
Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial, anti-inflammatory, antiproliferative, and antiepileptic activities. In the present study, we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition, lonchocarpine increased the expression of anti-oxidant enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), and manganese superoxide dismutase (MnSOD), which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further, mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover, lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor, AMPK, c-jun N-terminal protein kinase (JNK), and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore, lonchocarpine may be a potential therapeutic agent for neurode-generative diseases that are associated with oxidative stress.
Keywords
Lonchocarpine; Astrocytes; Antioxidant enzymes; AMPK; MAPK; Nrf2/ARE signaling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barnham, K. J., Masters, C. L. and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205-214.   DOI
2 Calkins, M. J., Johnson, D. A., Townsend, J. A., Vargas, M. R., Dowell, J. A., Williamson, T. P., Kraft, A. D., Lee, J. M., Li, J. and Johnson, J. A. (2009) The Nrf2/ARE pathway as a potential therapeutic target in neurodengenerative disease. Antioxid. Redox Signal. 11, 497-508.   DOI
3 Carling, D., Thornton, C., Woods, A. and Sanders, M. J. (2012) AMP-activated protein kinase: new regulation, new roles? Biochem. J. 445, 11-27.   DOI
4 Chen, K. and Maines, M. D. (2000) Nitric oxide induces heme oxygenase-1 via mitogen-activated protein kinases ERK and p38. Cell. Mol. Biol. 46, 609-617.
5 de Vries, H. E., Witte, M., Hondius, D., Rozemuller, A. J., Drukarch, B., Hoozemans, J. and van Horssen, J. (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Rad. Biol. Med. 45, 1375-1383.   DOI
6 Lima, N. M., Andrade, J. I., Lima, K. C., dos Santos, F. N., Barison, A., Salome, K. S., Matsuura, T. and Nunez, C. V. (2013) Chemical profile and biological activities of Deguelia duckeana A.M.G. Azevedo (Fabaceae). Nat. Prod. Res. 27, 425-432.   DOI
7 Johnson, D. A. and Johnson, J. A. (2015) Nrf2- a therapeutic target for the treatment of neurodegenerative diseases. Free Rad. Biol. Med. 88, 253-267.   DOI
8 Lee, E. J., Ko, H. M., Jeong, Y. H., Park, E. M. and Kim, H. S. (2015) $\beta$-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J. Neuroinflammation 12, 133.   DOI
9 Li, J., Jiang, Z., Li, X., Hou, Y., Liu, F., Li, N., Liu, X., Yang, L. and Chen, G. (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg. Med. Chem. Lett. 25, 53-58.   DOI
10 Liu, X. M., Peyton, K. J., Shebib, A. R., Wang, H., Korthuis, R. J. and Durante, W. (2011) Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am. J. Physiol. Heart Circ. Physiol. 300, H84-93.   DOI
11 Fontenele, J. B., Leal, L. K., Felix, F. H., Silveira, E. R. and Viana, G. S. (2009) Studies on the anti-oedematogenic properties of a fraction rich in lonchocarpin and derricin isolated from Lonchocarpus sericeus. Nat. Prod. Res. 23, 1677-1688.   DOI
12 Drukarch, B., Schepens, E., Stoof, J. C., Langeveld, C. H. and Van Muiswinkel, F. L. (1998) Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Rad. Biol. Med. 25, 217-220.   DOI
13 Elbirt, K. K., Whitmarsh, A. J., Davis, R. J., and Bonkosky, H. L. (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J. Biol. Chem. 273, 8922-8931.   DOI
14 Finsterwald, C., Magistretti, P. J. and Lengacher, S. (2015) Astrocytes: New targets for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 21, 3570-3581.   DOI
15 Georgewill, O. A. and Georgewill, U. O. (2009) Evaluation of the anti-inflammatory activity of extract of Abrus precatorious. East. J. Med. 14, 23-25.
16 Gul, M. Z., Ahmad, F., Kondapi, A. K., Qureshi, I. A. and Ghazi, I. A. (2013) Antioxidant and antiproliferative activities of Abrus precatorius leaf extracts--an in vitro study. BMC Complement. Altern. Med. 13, 53.   DOI
17 Jaiswal, A. K. (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Rad. Biol. Med. 36, 1199-1207.   DOI
18 Niture, S. K., Kaspar, J. W., Shen, J. and Jaiswal, A. K. (2010) Nrf2 signaling and cell survival. Toxicol. App. Pharmacol. 244, 37-42.   DOI
19 Martinez de Morentin, P. B., Gonzalez, C. R. and Lopez, M. (2010) AMP-activated protein kinase: 'a cup of tea' against cholesterol-induced neurotoxicity. J. Pathol. 222, 329-334.   DOI
20 Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X., Han, X., Li, J., Yang, M., Wang, Z., Wei, D. and Xiao, H. (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 20, 574-588.   DOI
21 Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta. Neuropathol. 119, 7-35.   DOI
22 Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E. and Aja, S. (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J. Neurochem. 109 Suppl 1, 17-23.   DOI
23 Ryter, S. W., Alam, J., Choi, A. M. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583-650.   DOI
24 Ryter, S. W., Xi, S., Hartsfield, C. L., and Choi A.M. (2002) Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells. Antioxid. Redox. Signal. 4, 587-592.   DOI
25 Syapin, P. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Brit. J. Pharmacol. 155, 623-640.
26 Zang, M., Zuccollo, A., Hou, X., Nagata, D., Walsh, K., Herscovitz, H., Brecher, P., Ruderman, N. B. and Cohen, R. A. (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279, 47898-47905.   DOI
27 Vari, R., D'Archivio, M., Filesi, C., Carotenuto, S., Scazzocchio, B., Santangelo, C., Giovannini, C. and Masella, R. (2011) Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem. 22, 409-417.   DOI
28 Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J. E., Janle, E. M., Lobo, J., Ferruzzi, M. G., Davies, P. and Marambaud, P. (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 285, 9100-9113.   DOI
29 Xu, C., Yuan, X., Pan, Z., Shen, G., Kim, J. H., Yu, S., Khor, T. O., Li, W., Ma, J. and Kong, A. N. (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol. Cancer Ther. 5, 1918-1926.   DOI
30 Zimmermann, K., Baldinger, J., Mayerhofer, B., Atanasov, A. G., Dirsch, V. M. and Heiss, E. H. (2015) Activated AMPK boosts the Nrf2/HO-1 signaling axis-A role for the unfolded protein response. Free Rad. Biol. Med. 88, 417-426.   DOI
31 Reyes-Chilpa, R., Baggio, C. H., Alavez-Solano, D., Estrada-Muniz, E., Kauffman, F. C., Sanchez, R. I. and Mesia-Vela, S. (2006) Inhibition of gastric H+,K+-ATPase activity by flavonoids, coumarins and xanthones isolated from Mexican medicinal plants. J. Ethnopharmacol. 105, 167-172.   DOI
32 Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919.   DOI
33 Park, J. S., Park, E. M., Kim, D. H., Jung, K., Jung, J. S., Lee, E. J., Hyun, J. W., Kang, J. L. and Kim, H. S. (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 209, 40-49.   DOI
34 Premanand, R. and Ganesh, T. (2010) Neuroprotective effects of Abrus precatorius Linn. aerial extract on hypoxic neurotoxicity induced rats. Int. J. Chem. Pharmac. Sci. 1, 9-15.
35 Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert. Rev. Mol. Med. 11, e17.   DOI
36 Vargas, M. R., Johnson, D. A., Sirkis, D. W., Messing, A. and Johnson, J. A. (2008) Nrf2 in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J. Neurosci. 28, 13574-13581.   DOI