DOI QR코드

DOI QR Code

Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes

  • Ananda Baral (College of Pharmacy, Yeungnam University) ;
  • Pil-Hoon Park (College of Pharmacy, Yeungnam University)
  • Received : 2023.12.28
  • Accepted : 2024.02.06
  • Published : 2024.09.01

Abstract

Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

Keywords

Acknowledgement

This work was supported by the Yeungnam University research grant in 2022. The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for the technical support regarding the confocal microscopic analysis.

References

  1. Akbal, A., Dernst, A., Lovotti, M., Mangan, M. S. J., Mcmanus, R. M. and Latz, E. (2022) How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell. Mol. Immunol. 19, 1201-1214.
  2. Awad, M. M., Enslen, H., Boylan, J. M., Davis, R. J. and Gruppuso, P. A. (2000) Growth regulation via p38 mitogen-activated protein kinase in developing liver. J. Biol. Chem. 275, 38716-38721.
  3. Baral, A. and Park, P.-H. (2021) Leptin induces apoptotic and pyroptotic cell death via NLRP3 inflammasome activation in rat hepatocytes. Int. J. Mol. Sci. 22, 12589.
  4. Campbell, J. S., Argast, G. M., Yuen, S. Y., Hayes, B. and Fausto, N. (2011) Inactivation of p38 MAPK during liver regeneration. Int. J. Biochem. Cell Biol. 43, 180-188.
  5. Chatterjee, S., Ganini, D., Tokar, E. J., Kumar, A., Das, S., Corbett, J., Kadiiska, M. B., Waalkes, M. P., Diehl, A. M. and Mason, R. P. (2013) Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J. Hepatol. 58, 778-784.
  6. Chen, C., Chang, Y. C., Liu, C. L., Liu, T. P., Chang, K. J. and Guo, I. C. (2007) Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and downregulating Bax via a Janus kinase 2-linked pathway. Endocr. Relat. Cancer 14, 513-529.
  7. Chen, H., Shi, B., Feng, X., Kong, W., Chen, W., Geng, L., Chen, J., Liu, R., Li, X., Chen, W., Gao, X. and Sun, L. (2015) Leptin and neutrophil-activating peptide 2 promote mesenchymal stem cell senescence through activation of the phosphatidylinositol 3-kinase/Akt pathway in patients with systemic lupus erythematosus. Arthritis Rheumatol. 67, 2383-2393.
  8. Chen, L., Ren, F., Zhang, H., Wen, T., Piao, Z., Zhou, L., Zheng, S., Zhang, J., Chen, Y., Han, Y., Duan, Z. and Ma, Y. (2012) Inhibition of glycogen synthase kinase 3β ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic reticulum stress-triggered apoptosis. PLoS One 7, e45202.
  9. Chitturi, S., Farrell, G., Frost, L., Kriketos, A., Lin, R., Fung, C., Liddle, C., Samarasinghe, D. and George, J. (2002) Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology 36, 403-409.
  10. Giannoukakis, N., Rudert, W. A., Ghivizzani, S. C., Gambotto, A., Ricordi, C., Trucco, M. and Robbins, P. D. (1999) Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 48, 1730-1736.
  11. Guadagno, J., Swan, P., Shaikh, R. and Cregan, S. P. (2015) Microglia-derived IL-1β triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 6, e1779.
  12. Gupta, A., Beg, M., Kumar, D., Shankar, K., Varshney, S., Rajan, S., Srivastava, A., Singh, K., Sonkar, S., Mahdi, A. A., Dikshit, M. and Gaikwad, A. N. (2017) Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: implications of NOS2. Free Radic. Biol. Med. 112, 93-108.
  13. Harashima, M., Seki, T., Ariga, T. and Niimi, S. (2013) Role of p16(INK4a) in the inhibition of DNA synthesis stimulated by HGF or EGF in primary cultured rat hepatocytes. Biomed. Res. 34, 269-273.
  14. Huang, X., He, Q., Zhu, H., Fang, Z., Che, L., Lin, Y., Xu, S., Zhuo, Y., Hua, L., Wang, J., Zou, Y., Huang, C., Li, L., Xu, H., Wu, D. and Feng, B. (2022) Hepatic leptin signaling improves hyperglycemia by stimulating MAPK phosphatase-3 protein degradation via STAT3. Cell. Mol. Gastroenterol. Hepatol. 14, 983-1001.
  15. Jeon, Y. J., Song, K. S., Han, H. J., Park, S. H., Chang, W. and Lee, M. Y. (2014) Rosmarinic acid inhibits chemical hypoxia-induced cytotoxicity in primary cultured rat hepatocytes. Arch. Pharm. Res. 37, 907-915.
  16. Jing, Z. T., Liu, W., Xue, C. R., Wu, S. X., Chen, W. N., Lin, X. J. and Lin, X. (2019) AKT activator SC79 protects hepatocytes from TNF-α-mediated apoptosis and alleviates d-Gal/LPS-induced liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G387-G396.
  17. Khakurel, A. and Park, P. H. (2018) Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol. Res. 128, 231-243.
  18. Kim, D. E., Dolle, M. E. T., Vermeij, W. P., Gyenis, A., Vogel, K., Hoeijmakers, J. H. J., Wiley, C. D., Davalos, A. R. and Hasty, P. (2020) Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin. Aging Cell 19, e13072.
  19. Kulawik, A., Engesser, R., Ehlting, C., Raue, A., Albrecht, U., Hahn, B., Lehmann, W. D., Gaestel, M., Klingmuller, U., Haussinger, D., Timmer, J. and Bode, J. G. (2017) IL-1β-induced and p38(MAPK)-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: signal transduction with robust and concentration-independent signal amplification. J. Biol. Chem. 292, 6291-6302.
  20. Kumari, R. and Jat, P. (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593.
  21. Lebeaupin, C., Proics, E., De Bieville, C. H. D., Rousseau, D., Bonnafous, S., Patouraux, S., Adam, G., Lavallard, V. J., Rovere, C., Le Thuc, O., Saint-Paul, M. C., Anty, R., Schneck, A. S., Iannelli, A., Gugenheim, J., Tran, A., Gual, P. and Bailly-Maitre, B. (2015) ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis. 6, e1879.
  22. Lee, S., Pham, D. V. and Park, P. H. (2022) Sestrin2 induction contributes to anti-inflammatory responses and cell survival by globular adiponectin in macrophages. Arch. Pharm. Res. 45, 38-50.
  23. Lee, S. M., Choi, H. J., Oh, C. H., Oh, J. W. and Han, J. S. (2014) Leptin increases TNF-αexpression and production through phospholipase D1 in Raw 264.7 cells. PLoS One 9, e102373.
  24. Lopez-Castejon, G. and Brough, D. (2011) Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22, 189-195.
  25. Luan, J., Zhang, X., Wang, S., Li, Y., Fan, J., Chen, W., Zai, W., Wang, S., Wang, Y., Chen, M., Meng, G. and Ju, D. (2018) NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis. Front. Immunol. 9, 758.
  26. Martinon, F., Burns, K. and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417-426.
  27. Mirea, A. M., Tack, C. J., Chavakis, T., Joosten, L. A. B. and Toonen, E. J. M. (2018) IL-1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol. Med. 24, 458-471.
  28. Nepal, S., Shrestha, A. and Park, P. H. (2015) Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells. Mol. Cell. Endocrinol. 412, 44-55.
  29. Nguyen, T., Kumar, R. P. and Park, P. H. (2023) Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes. Arch. Pharm. Res. 46, 160-176.
  30. Nov, O., Kohl, A., Lewis, E. C., Bashan, N., Dvir, I., Ben-Shlomo, S., Fishman, S., Wueest, S., Konrad, D. and Rudich, A. (2010) Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology 151, 4247-4256.
  31. Petrasek, J., Bala, S., Csak, T., Lippai, D., Kodys, K., Menashy, V., Barrieau, M., Min, S. Y., Kurt-Jones, E. A. and Szabo, G. (2012) IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476-3489.
  32. Pham, D.-V., Shrestha, P., Nguyen, T.-K., Park, J., Pandit, M., Chang, J.-H., Kim, S. Y., Choi, D.-Y., Han, S. S., Choi, I., Park, G. H., Jeong, J.-H. and Park, P.-H. (2023) Modulation of NLRP3 inflammasomes activation contributes to improved survival and function of mesenchymal stromal cell spheroids. Mol. Ther. 31, 890-908.
  33. Pham, D. V. and Park, P. H. (2022) Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J. Exp. Clin. Cancer Res. 41, 9.
  34. Ptak, A., Kolaczkowska, E. and Gregoraszczuk, E. L. (2013) Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells. Endocrine 43, 394-403.
  35. Pun, N. T., Subedi, A., Kim, M. J. and Park, P. H. (2015) Globular adiponectin causes tolerance to LPS-induced TNF-α expression via autophagy induction in RAW 264.7 macrophages: involvement of SIRT1/FoxO3A axis. PLoS One 10, e0124636.
  36. Raut, P. K., Kim, S. H., Choi, D. Y., Jeong, G. S. and Park, P. H. (2019) Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem. Pharmacol. 161, 73-88.
  37. Rotundo, L., Persaud, A., Feurdean, M., Ahlawat, S. and Kim, H.-S. (2018) The association of leptin with severity of non-alcoholic fatty liver disease: a population-based study. Clin. Mol. Hepatol. 24, 392-401.
  38. Saldeen, J., Lee, J. C. and Welsh, N. (2001) Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem. Pharmacol. 61, 1561-1569.
  39. Saxena, N. K., Sharma, D., Ding, X., Lin, S., Marra, F., Merlin, D. and Anania, F. A. (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 67, 2497-2507.
  40. Schulze-Bergkamen, H., Brenner, D., Krueger, A., Suess, D., Fas, S. C., Frey, C. R., Dax, A., Zink, D., Buchler, P., Muller, M. and Krammer, P. H. (2004) Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 39, 645-654.
  41. Segura, S., Efthimiadi, L., Porcher, C., Courtes, S., Coronas, V., Krantic, S. and Moyse, E. (2015) Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neurogenic cells. Front. Cell. Neurosci. 9, 350.
  42. Szabo, G. and Csak, T. (2012) Inflammasomes in liver diseases. J. Hepatol. 57, 642-654.
  43. Tilg, H., Moschen, A. R. and Kaneider, N. C. (2011) Pathways of liver injury in alcoholic liver disease. J. Hepatol. 55, 1159-1161.
  44. Wallace, H. L., Wang, L., Gardner, C. L., Corkum, C. P., Grant, M. D., Hirasawa, K. and Russell, R. S. (2022) Crosstalk between pyroptosis and apoptosis in hepatitis C virus-induced cell death. Front. Immunol. 13, 788138.
  45. Wang, X.-J., Kong, K.-M., Qi, W.-L., Ye, W.-L. and Song, P.-S. (2005) Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury. Acta Pharmacol. Sin. 26, 934-942.
  46. Zhang, Q., Wang, J., Huang, F., Yao, Y. and Xu, L. (2021) Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages. Dig. Liver Dis. 53, 598-605.
  47. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. and Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-432.
  48. Zhang, Z. M., Shen, C., Li, H., Fan, Q., Ding, J., Jin, F. C. and Sha, L. (2016) Leptin induces the apoptosis of chondrocytes in an in vitro model of osteoarthritis via the JAK2-STAT3 signaling pathway. Mol. Med. Rep. 13, 3684-3690.
  49. Zhao, X., Dong, Y., Zhang, J., Li, D., Hu, G., Yao, J., Li, Y., Huang, P., Zhang, M., Zhang, J., Huang, Z., Zhang, Y., Miao, Y., Xu, Q. and Li, H. (2016) Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells. Cell Death Dis. 7, e2188.
  50. Zhou, R., Yang, X., Li, X., Qu, Y., Huang, Q., Sun, X. and Mu, D. (2019) Recombinant CC16 inhibits NLRP3/caspase-1-induced pyroptosis through p38 MAPK and ERK signaling pathways in the brain of a neonatal rat model with sepsis. J. Neuroinflammation 16, 239.