Inhibitory Mechanism of Curcumin in Osteoclast Differentiation

파골세포의 분화에 커규민의 억제 작용기전

  • Kwak, Han-Bok (Department of Anatomy, School of Medicine, Wonkwang University and Wonkwang Medical Science Institute) ;
  • Choi, Min-Kyu (Department of Anatomy, School of Medicine, Wonkwang University and Wonkwang Medical Science Institute)
  • 곽한복 (원광대학교 의과대학 해부학교실) ;
  • 최민규 (원광대학교 의과대학 해부학교실)
  • Published : 2008.08.25

Abstract

Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.

Keywords

References

  1. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin T.J. Modulation of osteoclast differentiation and function and ligand families. Endocr. Rev. 20: 345-357, 1999 https://doi.org/10.1210/er.20.3.345
  2. Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature, 423: 337-342, 2003 https://doi.org/10.1038/nature01658
  3. Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649, 2003 https://doi.org/10.1038/nrg1122
  4. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901, 2002 https://doi.org/10.1016/S1534-5807(02)00369-6
  5. Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi, T., Takayanagi, H., Takai, T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 428: 758-763, 2004 https://doi.org/10.1038/nature02444
  6. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304, 2007 https://doi.org/10.1038/nri2062
  7. Shinohara, M., Koga, T., Okamoto, K., Sakaguchi, S., Arai, K., Yasuda, H., Takai, T., Kodama, T., Morio, T., Geha, R.S., Kitamura, D., Kurosaki, T., Ellmeier, W., Takayanagi, H. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell, 132: 794-806, 2008 https://doi.org/10.1016/j.cell.2007.12.037
  8. Lee, J., Kim, K., Kim, J.H., Jin, H.M., Choi, H.K., Lee, S.H., Kook, H., Kim, K.K., Yokota, Y., Lee, S.Y., Choi, Y., Kim, N. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood, 107: 2686-2693, 2006 https://doi.org/10.1182/blood-2005-07-2798
  9. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., Kim, N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood, 109: 3253-3259, 2007 https://doi.org/10.1182/blood-2006-09-048249
  10. Goel, A., Kunnumakkara, A.B., Aggarwal, B.B. Curcumin as "Curecumin": From kitchen to clinic. Biochem. Pharmacol. 75: 787-809, 2008 https://doi.org/10.1016/j.bcp.2007.08.016
  11. Shishodia, S., Singh, T., Chaturvedi, M.M. Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol. 595: 127-148, 2007 https://doi.org/10.1007/978-0-387-46401-5_4
  12. Bharti, A.C., Takada, Y., Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol. 172: 5940-5947, 2004 https://doi.org/10.4049/jimmunol.172.10.5940
  13. Karsenty, G., Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell, 2: 389-406, 2002 https://doi.org/10.1016/S1534-5807(02)00157-0
  14. Partington, G.A., Fuller, K., Chambers, T.J., Pondel, M. Mitf-PU. 1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone, 34: 237-245, 2004 https://doi.org/10.1016/j.bone.2003.11.010
  15. Matsumoto, M., Sudo, T., Saito, T., Osada, H., Tsujimoto, M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275: 31155-1161, 2000 https://doi.org/10.1074/jbc.M001229200
  16. Jimi, E., Akiyama, S., Tsurukai, T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., Takahashi, N., Suda, T. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163: 434-442, 1999
  17. Jimi, E., Aoki, K., Saito, H., D'Acquisto, F., May, M.J., Nakamura, I., Sudo, T., Kojima T., Okamoto, F., Fukushima, H., Okabe, K., Ohya, K., Ghosh, S. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10: 617-624, 2004 https://doi.org/10.1038/nm1054
  18. Isotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3: 1285-1289, 1997 https://doi.org/10.1038/nm1197-1285
  19. Lin, L., DeMartino, G.N., Greene, W.C. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell, 92: 819-828, 1998 https://doi.org/10.1016/S0092-8674(00)81409-9
  20. Fleischmann, A., Hafezi, F., Elliott, C., Reme, C.E., Ruther, U., Wagner, E.F. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev. 14: 2695-2700, 2000 https://doi.org/10.1101/gad.187900