Browse > Article

Inhibitory Mechanism of Curcumin in Osteoclast Differentiation  

Kwak, Han-Bok (Department of Anatomy, School of Medicine, Wonkwang University and Wonkwang Medical Science Institute)
Choi, Min-Kyu (Department of Anatomy, School of Medicine, Wonkwang University and Wonkwang Medical Science Institute)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.22, no.4, 2008 , pp. 796-801 More about this Journal
Abstract
Bone is a dynamic tissue that is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Curcumin isolated from Kang-hwang (Turmeric) is widely used as a foodstuff, cosmetic, and medicine. However, the effect of curcumin isolated from Kang-hwang in osteoclast differentiation remains unknown. In this study, we sought to examine the role of curcumin in osteoclast differentiation. Here we show that curcumin greatly inhibited RANKL-mediated osteoclast differentiation in osteoclast precursors without cytotoxicity. RANKL induced the phosphorylation of p38 and JNK mitogen-activated protein kinase (MAPK) and mediated $I-{\kappa}B$ degradation in bone marrow macrophages (BMMs). However, RANKL-mediated p38 MAPK phosphorylation was inhibited by the addition of curcumin. Curcumin inhibited the mRNA expression of TRAP, c-Fos, and NFATc1 in BMMs treated with RANKL. Furthermore, the protein expression of c-Fos and NFATc1 induced by RANKL was suppressed by curcumin treatment. Taken together, our results suggest that curcumin may have a potential therapeutic role in bone-related diseases such as osteoporosis by inhibiting osteoclast differentiation.
Keywords
osteoclasts; curcumin; RANKL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649, 2003   DOI   ScienceOn
2 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3: 889-901, 2002   DOI   ScienceOn
3 Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304, 2007   DOI   ScienceOn
4 Lee, J., Kim, K., Kim, J.H., Jin, H.M., Choi, H.K., Lee, S.H., Kook, H., Kim, K.K., Yokota, Y., Lee, S.Y., Choi, Y., Kim, N. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood, 107: 2686-2693, 2006   DOI   ScienceOn
5 Matsumoto, M., Sudo, T., Saito, T., Osada, H., Tsujimoto, M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275: 31155-1161, 2000   DOI   ScienceOn
6 Goel, A., Kunnumakkara, A.B., Aggarwal, B.B. Curcumin as "Curecumin": From kitchen to clinic. Biochem. Pharmacol. 75: 787-809, 2008   DOI   ScienceOn
7 Isotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., Bravo, R. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3: 1285-1289, 1997   DOI   ScienceOn
8 Bharti, A.C., Takada, Y., Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol. 172: 5940-5947, 2004   DOI
9 Jimi, E., Aoki, K., Saito, H., D'Acquisto, F., May, M.J., Nakamura, I., Sudo, T., Kojima T., Okamoto, F., Fukushima, H., Okabe, K., Ohya, K., Ghosh, S. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10: 617-624, 2004   DOI   ScienceOn
10 Partington, G.A., Fuller, K., Chambers, T.J., Pondel, M. Mitf-PU. 1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone, 34: 237-245, 2004   DOI   ScienceOn
11 Jimi, E., Akiyama, S., Tsurukai, T., Okahashi, N., Kobayashi, K., Udagawa, N., Nishihara, T., Takahashi, N., Suda, T. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immunol. 163: 434-442, 1999
12 Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin T.J. Modulation of osteoclast differentiation and function and ligand families. Endocr. Rev. 20: 345-357, 1999   DOI   ScienceOn
13 Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., Kim, N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood, 109: 3253-3259, 2007   DOI   ScienceOn
14 Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., Taniguchi, T., Takayanagi, H., Takai, T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature, 428: 758-763, 2004   DOI   ScienceOn
15 Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature, 423: 337-342, 2003   DOI   ScienceOn
16 Karsenty, G., Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell, 2: 389-406, 2002   DOI   ScienceOn
17 Lin, L., DeMartino, G.N., Greene, W.C. Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell, 92: 819-828, 1998   DOI   ScienceOn
18 Shishodia, S., Singh, T., Chaturvedi, M.M. Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol. 595: 127-148, 2007   DOI
19 Shinohara, M., Koga, T., Okamoto, K., Sakaguchi, S., Arai, K., Yasuda, H., Takai, T., Kodama, T., Morio, T., Geha, R.S., Kitamura, D., Kurosaki, T., Ellmeier, W., Takayanagi, H. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell, 132: 794-806, 2008   DOI   ScienceOn
20 Fleischmann, A., Hafezi, F., Elliott, C., Reme, C.E., Ruther, U., Wagner, E.F. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev. 14: 2695-2700, 2000   DOI   ScienceOn