• Title/Summary/Keyword: p and n-type electrical properties

Search Result 198, Processing Time 0.084 seconds

Characterization and Fabrication of Tin Oxide Thin Film by RF Reactive Sputtering (RF Reactive Sputtering법에 의한 산화주석 박막의 제조 및 특성)

  • Kim, Young-Rae;Kim, Sun-Phil;Kim, Sung-Dong;Kim, Sarah Eun-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.494-499
    • /
    • 2010
  • Tin oxide thin films were prepared on borosilicate glass by rf reactive sputtering at different deposition powers, process pressures and substrate temperatures. The ratio of oxygen/argon gas flow was fixed as 10 sccm / 60 sccm in this study. The structural, electrical and optical properties were examined by the design of experiment to evaluate the optimized processing conditions. The Taguchi method was used in this study. The films were characterized by X-ray diffraction, UV-Vis spectrometer, Hall effect measurements and atomic force microscope. Tin oxide thin films exhibited three types of crystal structures, namely, amorphous, SnO and $SnO_2$. In the case of amorphous thin films the optical band gap was widely spread from 2.30 to 3.36 eV and showed n-type conductivity. While the SnO thin films had an optical band gap of 2.24-2.49 eV and revealed p-type conductivity, the $SnO_2$ thin films showed an optical band gap of 3.33-3.63 eV and n-type conductivity. Among the three process parameters, the plasma power had the most impact on changing the structural, electrical and optical properties of the tin oxide thin films. It was also found that the grain size of the tin oxide thin films was dependent on the substrate temperature. However, the substrate temperature has very little effect on electrical and optical properties.

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

Structural and Optical Properties of CuInS2 Thin Films Fabricated by Electron-beam Evaporation

  • Jeong, Woon-Jo;Park, Gye-Choon;Chung, Hae-Duck
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2003
  • Single phase CuInS$_2$ thin film with the strongest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second strongest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$was well made with chalcopyrite structure at substrate temperature of 70$^{\circ}C$. annealing temperature of 250$^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 Um when the Cu/In composition ratio of 1.03, where the lattice constant of a and c were 5.60${\AA}$ and 11.12${\AA}$, respectively. The Cu/In stoichiometry of the single-phase CuInS$_2$thin films was from 0.84 to 1.3. The film was p-type when tile Cu/In ratio was above 0.99 and was n-type when the Cu/In was below 0.95. The fundamental absorption wavelength, absorption coefficient and optical band gap of p-type CuInS$_2$ thin film with Cu/In=1.3 were 837nm, 3.OH 104 cm-1 and 1.48 eV, respectively. The fundamental absorption wavelength absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film with Cu/In=0.84 were 821 nm, 6.0${\times}$10$^4$cm$\^$-1/ and 1.51 eV, respectively.

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

The Resistivity Properties of SrTiO$_3$ Thin Films by Sputtering method. (스퍼터링 방법을 이용한 SrTiO$_3$박막의 저항을 특성)

  • 이우선;손경춘;서용진;김남오;이경섭;김형곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.207-210
    • /
    • 1999
  • The objective of this study Is to deposited the preparation of SrTiO$_3$3 dielectric thin films on Ag/barrier-mater/Si(N-type 100) bottom electrode using a conventional rf-magnetron sputtering technique with a ceramic target under various conditions. It is demonstrated that the leakage current of films are strongly dependent on the atmosphere during deposition and the substrate temperature. The resistivity properties of films deposited on silicon substrates were very high resistivity. Capacitance of the films properties were the highest value(1000pF) and dependent on substrate temperature.

  • PDF

The electrical characteristics of STO dielectric thin films for application of DRAM capacitor. (DRAM 캐패시터 응용을 위한 STO 유전체 박막의 전기적인 특성)

  • 이우선;오금곤;김남오;손경춘;정창수;정용호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.291-294
    • /
    • 1998
  • The objective of this study is to deposited the preparation of STO dielectric thin films on Ag/barrier-mater/Si(N-type 100) bottom electrode using a conventional rf-magnetron sputtering technique with a ceramic target under various conditions. It is demonstrated that the leakage current of films are strongly dependent on the atmosphere during deposition and the substrate temperature. The resistivity properties of films deposited on silicon substrates were very high resistivity. Capacitance of the films properties were the highest value(1000pF) and dependent on substrate temperature.

  • PDF

Low resistivity ohmic Pt/Si/Ti contacts to p-type 4H-SiC (Pt/Si/Ti P형 4H-SiC 오옴성 접합에서 낮은 접촉 저항에 관한 연구)

  • Yang, S.J.;Lee, J.H.;Nho, I.H.;Kim, C.G.;Cho, N.I.;Jung, K.H.;Kim, E.D.;Kim, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.521-524
    • /
    • 2001
  • In this letter. we report on the investigation of Ti. Pt/Si/Ti Ohmic contacts to p-type 4H-SiC. The contacts were formed by a 2-step vacuum annealing at $500^{\circ}C$ for 1h. $950^{\circ}C$ for 10 min respectively. The contact resistances were measured using the transmission line model method. which resulted in specific contact resistivities in the $3.5{\times}10^{-3}$ and $6.2{\times}10^{-4}ohm/cm^{2}$, and the physical properties of the contacts were examined using x-ray diffraction. microscopy. AES(auger electron spectroscopy). AES analysis has shown that, at this anneal temperature, there was a intermixing of the Ti and Si. migration of into SiC. Overlayer of Pt had the effect of decreasing the specific contact resistivity and improving the surface morphology of the annealed contact.

  • PDF

The formation and the electrical properties of p-type ZnO films (p-형 ZnO 박막의 성장 및 전기적 특성에 대한 연구)

  • Jeong, M.C.;Moon, T.H.;Ko, Y.D.;Yun, Il-Gu;Myoung, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.72-74
    • /
    • 2003
  • Rf magnetron sputtering을 이용하여 InP, GaAs 기판위에 ZnO 박막을 증착시켰다. 진공 ampul 및 $Zn_3P_2$ 분위기 하에서 열처리 과정을 통해 P와 As을 ZnO 박막내에 도핑하였으며, 박막의 전기적 특성 측정 결과 정공의 농도가 $10^{16}cm^{-3}-10^{19}cm^{-3}$ 으로서 p-형 전기전도도를 나타내었다. XRD 측정을 통하여 ZnO 박막의 내부에 이상이 존재하지 않는다는 것을 확인하였다. 또한 FESEM을 이용하여 p-형 ZnO 박막의 표면을 관찰하였으며 그 위에 n-형 ZnO 박막을 sputtering을 이용하여 증착시켜 I-V 특성을 관찰하였다. 본 실험을 통해 P 및 As의 확산을 통한 p-형 ZnO 박막의 성장이 가능하였으며, I-V 특성으로부터 ZnO의 발광소자 및 자외선 검출기로의 응용이 가능함을 확인하였다.

  • PDF

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.

Characterization of amorphous Sb-Bi-Te thin films as a function of Bi concentration (Bi 농도에 따른 비정질 Sb-Bi-Te 박막의 특성)

  • ;D. Mangalaraj
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2002
  • Thin films of $Sb_{2-x}Bi_xTe_3$ (x = 0.0, 0.5, and 1.0) are grown by vacuum evaporation. XRD analysis shows the amorphous nature of the films, and the composition studies confirm the stoichiometry of the films. Microstructural parameters of the films have been calculated and used to explain the electrical and optical properties of the films. It is observed that the carrier type has changed from p- to n-type at higher concentration (x = 1.0) of Bi. The resistivity of the films decreases rapidly with the increase of Bi concentration. However, the refractive index and optical band gap of the films increase with the Bi concentration.