• Title/Summary/Keyword: oxygen sensor

Search Result 310, Processing Time 0.026 seconds

Estimation of Water Quality of Fish Farms using Multivariate Statistical Analysis

  • Ceong, Hee-Taek;Kim, Hae-Ran
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • In this research, we have attempted to estimate the water quality of fish farms in terms of parameters such as water temperature, dissolved oxygen, pH, and salinity by employing observational data obtained from a coastal ocean observatory of a national institution located close to the fish farm. We requested and received marine data comprising nine factors including water temperature from Korea Hydrographic and Oceanographic Administration. For verifying our results, we also established an experimental fish farm in which we directly placed the sensor module of an optical mode, YSI-6920V2, used for self-cleaning inside fish tanks and used the data measured and recorded by a environment monitoring system that was communicating serially with the sensor module. We investigated the differences in water temperature and salinity among three areas - Goheung Balpo, Yeosu Odongdo, and the experimental fish farm, Keumho. Water temperature did not exhibit significant differences but there was a difference in salinity (significance <5%). Further, multiple regression analysis was performed to estimate the water quality of the fish farm at Keumho based on the data of Goheung Balpo. The water temperature and dissolved-oxygen estimations had multiple regression linear relationships with coefficients of determination of 98% and 89%, respectively. However, in the case of the pH and salinity estimated using the oceanic environment with nine factors, the adjusted coefficient of determination was very low at less than 10%, and it was therefore difficult to predict the values. We plotted the predicted and measured values by employing the estimated regression equation and found them to fit very well; the values were close to the regression line. We have demonstrated that if statistical model equations that fit well are used, the expense of fish-farm sensor and system installations, maintenances, and repairs, which is a major issue with existing environmental information monitoring systems of marine farming areas, can be reduced, thereby making it easier for fish farmers to monitor aquaculture and mariculture environments.

Pulse wave analysis system using wrist type oximeter for u-Health service (u-Health 서비스 지원을 위한 착용형 옥시미터를 이용한 맥파 분석 시스템)

  • Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper describes a real time reliable monitoring method and analysis system using wrist type oximeter for ubiquitous healthcare service based on IEEE 802.15.4 standard. Photoplethysmograph(PPG) is simple and cost effective technique to measure blood volume change. In order to obtain and monitor physiological body signals continuously, a small size and low power consumption wrist type oximeter is designed for the measurement of oxygen saturation of a patient unobtrusively. The measured data is transferred to a central PC or server computer by using wireless sensor nodes in wireless sensor network for storage and analysis purposes. LabVIEW server program is designed to monitor stress indicator from heart rate variability(HRV) and process the measured PPG to accelerated plethysmograph(APG) by appling second order derivatives in server PC. These experimental results demonstrate that APG can precisely describe the features of an individual's PPG and be used as estimation of vascular elasticity for blood circulation.

Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor (원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Choi, Kang-Wal;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

Development of a Portable SpO2-based Biosignal Monitoring System (SpO2 기반 휴대형 생체 신호 모니터링 시스템 개발)

  • Lee, Hyung-Bong;Park, Sung-Wook;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.273-283
    • /
    • 2013
  • The traditional medical equipments are devices used by medical professionals but not used in public environment. Common people, however, require light-weight medical devices to make healthcare for themselves nowadays. Those medical devices are used to monitor personal health status such as blood pulse, blood pressure, diabetes. Also, some of them are operated in mobile environment called u-healthcare. This paper implements a portable healthcare system composed of $SpO_2$(Saturation of Partial Pressure Oxygen) sensors and a gateway for detecting hypoxemia during people's leasure activity such as climbing or hiking. The $SpO_2$ sensor is designed as watch style to support dynamic exercise and the gateway is designed as necklace style to support the elderly. The result of a performance evaluation shows that the performance of the $SpO_2$ sensor using reflection technology is not lower than that of a clairvoyant styled $SpO_2$ sensor.

Laser-induced Graphene Based Wearable Glucose Patch Sensor with Ultra-low Detection Limit (레이저 유도 그래핀 기반의 고성능 웨어러블 포도당 패치센서)

  • Nah, Joongsan;Yoon, Hyosang;Xuan, Xing;Kim, Jiyoung;Park, Jaeyeong
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • Sweat-based glucose sensors are being widely investigated and researched as they facilitate painless and continuous measurement. However, because the concentration of sweat glucose is almost a hundred times lower than that of blood glucose, it is important to develop electrochemical sensing electrode materials that are highly sensitive to glucose molecules for the detection of low concentrations of glucose. The preparation of a flexible and ultra-sensitive sensor for detection of sweat glucose is presented in this study. Oxygen and nitrogen are removed from the surface of a polyimide film by exposure to a CO2 laser; hence, laser-induced graphene (LIG) is formed. The fabricated LIG electrode showed favorable properties of high roughness and good stability, flexibility, and conductivity. After the laser scanning, Pt nanoparticles (PtNP) with good catalytic behavior were electrodeposited and the glucose sensor thus developed, with a LIG/PtNP hybrid electrode, exhibited a high order of sensitivity and detection limit for sweat glucose.

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

Characteristics of NiCr Thin Films Prepared by rf Magnetron Sputtering as Absorption Layer for Infrared Sensors (적외선 센서를 위해 흡수층으로서 rf Magnetron Sputtering에 의해 제조된 NiCr 박막의 특성)

  • Hur, Sung-Gi;Choi, Eun-Suck;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.640-644
    • /
    • 2003
  • NiCr thin films were fabricated by rf magnetron sputtering for applying to both the top electrode and absorption layer on Pb(Zr, Ti)O$_3$(PZT) thin films for infrared sensors. The rms roughness and resistivity of NiCr films prepared with Ni power of 80 W and Cr power of 50 W showed the most stable oxidation resistance after annealing at $600^{\circ}C$ for 5 min in oxygen ambient. The rms roughness and resistivity of NiCr films annealed at $V^{\circ}C$ in oxygen ambient were about 2$0\AA$ and $70 \mu$Ω-cm, respectively. As-deposited Ni/PZT/Pt and NiCr (Ni 80 W, Cr 50 W)/PZT/Pt structures showed well saturated hysteresis loops. However, in case of the samples annealed at $500^{\circ}C$ in oxygen ambient, only NiCr/PZT/Pt showed saturated loops having a remanent polarization of 20$\mu$C/$\textrm{cm}^2$. Ultra-thin NiCr films showed a possibility as a top electrode for infrared sensors.

Improvement of Cathode Reaction of a Mediatorless Microbial Fuel Cell

  • Pham, The-Hai;Jang, Jae-Kyung;Chang, In-Seop;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.324-329
    • /
    • 2004
  • Oxygen diffuses through the cation-specific membrane, reducing the coulomb yield of the fuel cell. In the present study, attempts were made to enhance current generation from the fuel cell by lowering the oxygen diffusion, including the uses of ferricyanide as a cathode mediator and of a platinum-coated graphite electrode. Ferricyanide did not act as a mediator as expected, but as an oxidant in the cathode compartment of the microbial fuel cell. The microbial fuel cell with platinum-coated graphite cathode generated a maximum current 3-4 times higher than the control fuel cell with graphite cathode, and the critical oxygen concentration of the former was 2.0 mg $1^{-1}$, whilst that of the latter was 6.6 mg $1^{-1}$. Based on these results, it was concluded that inexpensive electrodes are adequate for the construction of an economically feasible microbial fuel cell with better performance as a novel wastewater treatment process.

A Study on the Corrosion Inhibition Effects of Sodium Heptanoate for Carbon Steel in Aqueous Solution

  • Won, D.S.;Kho, Y.T.
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.227-232
    • /
    • 2004
  • The carboxylates as a corrosion inhibitor has been studied by many researchers because of its environmental safety and low depletion rate. However, conventional test methods of inhibitor such as weight loss measurements, linear polarization resistance and corrosion potential monitoring etc., evaluate uniform corrosion of metals. These methods are unable to evaluate crevice-related corrosions, which are encountered in most of heat exchanging facilities. In order to choose the optimum corrosion inhibitor, the appropriate test methods are required to evaluate their performances in service environment. From this point of view, polarization technique was used to evaluate the characteristics of sodium heptanoate on corrosion behavior for carbon steel. Especially a thin film crevice sensor technique were applied to simulate the crevice corrosion in this study. From these experiments, we found that oxygen as an oxidizing agent was required to obtain stable passive film on the metal. Presence of oxygen, however, accelerated crevice corrosion. Potential shift by oxygen depletion and weakened inhibitive film inside the crevice were responsible for such accelerated feature. It is shown that film for corrosion inhibition is a mixture of sodium heptanoate and iron (II) heptanoate as reaction product of iron surface and sodium heptanoate. The iron (II) heptanoate which has been synthesized by reaction of heptanoic acid and ferrous chloride in methanol solution forms bidentate complex.

Development of the calibration system for very accurate thermometers at low temperatures (초정밀 온도센서의 저온 영역 교정 장치 개발)

  • Yang, In-Seok;Song, Chang-Ho;Kang, Kee-Hoon;Kim, Yong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • For the accurate calibrations of thermometers at low temperatures, triple points of oxygen and argon have been realized using sealed-type triple point cells. The triple points were realized with both adiabatic and continuous heating methods. The resistance of three capsule-type standard platinum resistance thermometers were measured at the triple points of oxygen, argon, mercury and water for the calibrations of these thermometers in the range from $-220^{\circ}C$ to $0.01^{\circ}C$. The extended uncertainty, with the coverage factor of 2, of the calibration in this range is smaller than 1 mK.