DOI QR코드

DOI QR Code

Laser-induced Graphene Based Wearable Glucose Patch Sensor with Ultra-low Detection Limit

레이저 유도 그래핀 기반의 고성능 웨어러블 포도당 패치센서

  • 나중산 (광운대학교 전자공학과) ;
  • 윤효상 (광운대학교 전자공학과) ;
  • 선성 (광운대학교 전자공학과) ;
  • 김지영 (광운대학교 전자공학과) ;
  • 박재영 (광운대학교 전자공학과)
  • Received : 2018.12.27
  • Accepted : 2019.01.25
  • Published : 2019.01.31

Abstract

Sweat-based glucose sensors are being widely investigated and researched as they facilitate painless and continuous measurement. However, because the concentration of sweat glucose is almost a hundred times lower than that of blood glucose, it is important to develop electrochemical sensing electrode materials that are highly sensitive to glucose molecules for the detection of low concentrations of glucose. The preparation of a flexible and ultra-sensitive sensor for detection of sweat glucose is presented in this study. Oxygen and nitrogen are removed from the surface of a polyimide film by exposure to a CO2 laser; hence, laser-induced graphene (LIG) is formed. The fabricated LIG electrode showed favorable properties of high roughness and good stability, flexibility, and conductivity. After the laser scanning, Pt nanoparticles (PtNP) with good catalytic behavior were electrodeposited and the glucose sensor thus developed, with a LIG/PtNP hybrid electrode, exhibited a high order of sensitivity and detection limit for sweat glucose.

Keywords

HSSHBT_2019_v28n1_47_f0001.png 이미지

Fig. 1. fabrication of laser-induced graphene-based flexible biosensors with ultra-low detection.

HSSHBT_2019_v28n1_47_f0002.png 이미지

Fig. 2. Optical image of the fabricated enzymatic glucose sensor

HSSHBT_2019_v28n1_47_f0003.png 이미지

Fig. 3. FE-SEM images of laser-induced graphene after electroplating Pt nanoparticles ; (a) 2000 times magnification, (b) 5000 times magnification, (c) 10000 times magnification, and (d) 50000 times magnification.

HSSHBT_2019_v28n1_47_f0004.png 이미지

Fig. 4. Graph of cyclic voltammetry curves before and after electroplating of Pt nanoparticles on laser induced graphene.

HSSHBT_2019_v28n1_47_f0005.png 이미지

Fig. 5. Graph of change in current with injection of glucose.

HSSHBT_2019_v28n1_47_f0006.png 이미지

Fig. 6. Linear Regression Analysis of Current Response to Glucose Concentration Change.

HSSHBT_2019_v28n1_47_f0007.png 이미지

Fig. 7. Comparison of amperometric response between glucose and disturbance species.

Table 1. Comparison with Previous Studies

HSSHBT_2019_v28n1_47_t0001.png 이미지

References

  1. D. M. Nathan, B. Zinman, P. A. Cleary, J.-Y. C. Backlund, S. Genuth, R. Miller, and T. J. Orchard, "Modern-Day Clinical Course of Type 1 Diabetes Mellitus After 30 Years' Duration The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications and Pittsburgh Epidemiology of Diabetes Complications Experience", Arch Intern Med, Vol. 169, No. 14, pp. 1307-1316, 2009. https://doi.org/10.1001/archinternmed.2009.193
  2. M. Shichiri, Y. Yamasaki, R. Kawamori, N. Hakui, and H. Abe, "Wearable Artificial Endocrine Pancreas with Needle-type Glucose Sensor", Lancet, Vol. 320, No. 8303, pp. 1129-1131, 1982. https://doi.org/10.1016/S0140-6736(82)92788-X
  3. M. A. Arnold, and G. W. Small, "Noninvasive Glucose Sensing", Anal. Chem., Vol. 77, No. 17, pp. 5429-5439, 2005. https://doi.org/10.1021/ac050429e
  4. V. L. Alexeev, S. Das, D. N. Finegold, and S. A. Asher, "Photonic Crystal Glucose-Sensing Material for Noninvasive Monitoring of Glucose in Tear Fluid", Clinical Chemistry, Vol. 50, No. 12, pp. 2353-2360, 2014. https://doi.org/10.1373/clinchem.2004.039701
  5. B. D. Cameron, and G. L. Cote, "Noninvasive Glucose Sensing Utilizing a Digital Closed-Loop Polarimetric Approach", IEEE Trans Biomed. Eng, Vol. 44, No. 12, pp. 1221-1227, 1997. https://doi.org/10.1109/10.649993
  6. T. Arakawa, Y. Kuroki, H. Nitta, P. Chouhan, K. Toma, S. Sawada, S. Takeuchi, T. Sekita, K. Akiyoshi, S. Minakuchi, and K. Mitsubayashi, "Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor", Biosens. Bioelectron., Vol. 84, pp. 106-111, 2016. https://doi.org/10.1016/j.bios.2015.12.014
  7. Y. T. Liao, H. Yao, A. Lingley, B. Parviz, and B. P. Otis, "A 3-$\mu$WCMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring", IEEE J. Solid-State Circuits, Vol. 47, No. 1, pp. 335-344, 2012. https://doi.org/10.1109/JSSC.2011.2170633
  8. H. Lee, C. Song, Y. S. Hong, M. S. Kim, H. R. Cho, Ta. Kang, K. Shin, S. H. Choi, T. Hyeon, and D. H. Kim, "Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module", Sci. Adv., Vol. 3, No. 3, pp. e1601314(1)-e1601314(9), 2017. https://doi.org/10.1126/sciadv.1601314
  9. J. Moyer, D. Wilson, I. Finkelshtein, B. Wong, and R. Potts, "Correlation Between Sweat Glucose and Blood Glucose in Subjects with Diabetes", Diabetes Technol. Ther., Vol. 14, No. 5, pp. 398-402, 2012. https://doi.org/10.1089/dia.2011.0262
  10. C. J. Harvey, R. F. L. Bouf, and A. B. Stefaniak, "Formulation and stability of a novel artificial human sweat under conditions of storage and use", Toxicolo. In Vitro, Vol. 24, No. 6, pp. 1790-1796, 2010. https://doi.org/10.1016/j.tiv.2010.06.016
  11. S. K. Vashist, "Continuous Glucose Monitoring Systems: A Review", Diagnostics, Vol. 3, No. 4, pp. 385-412, 2013. https://doi.org/10.3390/diagnostics3040385
  12. L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes", Chem. Soc. Rev., Vol. 38, pp. 2520-2531, 2009 https://doi.org/10.1039/b813846j
  13. L Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye , N. D. Kim, Q. Zhong, Y. Yang, Hu. Fei, G. Ruan, and J. M. Tour, "High?Performance Pseudocapacitive Microsupercap acitors from Laser?Induced Graphene", Adv. Mater., Vol. 28, No. 5, pp. 838-845, 2016. https://doi.org/10.1002/adma.201503333
  14. L. Q. Tao, H. Tian, Y. Liu, Z. Y. Ju, Y. Pang, Y. Q. Chen, D. Y. Wang, X. G. Tian, J. C. Yan, N. Q. Deng, Y. Yang, and T. L. Ren, "An intelligent artificial throat with sound-sensing ability based on laser induced graphene", Nature Commun., Vol. 8, pp. 1-8, 2017. https://doi.org/10.1038/s41467-016-0009-6
  15. J. Lin, Z. Peng, Y. Liu, F. R. Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, "Laser-induced porous graphene films from commercial polymers", Nature Commun., Vol. 5, No. 18, pp. 1-8, 2017.
  16. D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, and G. Yu, "Highly Sensitive Glucose Sensor Based on Pt Nanoparticle /Polyaniline Hydrogel Heterostructures", ACS Nano, Vol. 7, No. 4, pp. 3540-3546, 2013. https://doi.org/10.1021/nn400482d
  17. H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T. D. Chung, N. Lu, T. Hyeon, S. H. Choi, and D. H. Kim, "A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy", Nature Nanotechnol., Vol. 11, pp. 566-572, 2016. https://doi.org/10.1038/nnano.2016.38
  18. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, "Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis", Nature., Vol. 592, pp. 509-514, 2016.
  19. S. Emaminejad, W. Gao, E. Wu, Z. A. Davies, H. Y. Y. Nyein , S. Challa, S. P. Ryan, H. M. Fahad, K. Chen, Z. Shahpar, S. Talebi, C. Milla, A. Javey, and R. W. Davis, "Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform", Proc Natl Acad Sci U S A., Vol. 114, No. 18, pp. 4625-4630, 2017. https://doi.org/10.1073/pnas.1701740114
  20. A. J. Bandodkar, W. Jia, C. Yardimci, X. Wang, J. Ramirez, and J. Wang, "Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study", Anal. Chem., Vol. 87, No. 1, pp. 394-398, 2014. https://doi.org/10.1021/ac504300n