• Title/Summary/Keyword: oxide thin film

Search Result 1,864, Processing Time 0.035 seconds

Formation of nickel oxide thin film and analysis of its electrical properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn;Lee, Seon-Gil;Park, Yong-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-55
    • /
    • 2005
  • Ni oxide thin films with thermal sensitivity superior to Pt and Ni thin films were formed through annealing treatment after Ni thin films were deposited by a r.f. magnetron sputtering method. Resistivity values of Ni oxide thin films were in the range of $10.5{\mu}{\Omega}cm$ to $2.84{\times}10^{4}{\mu}{\Omega}cm$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation from 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of $0{\sim}150^{\circ}C$. Because of the high linear TCR and resistivity characteristics, Ni oxide thin films exhibit much higher sensitivity to flow and temperature changes than pure Ni thin films and Pt thin films.

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

Fabrication and characterization of $SnO_2$ anode thin film for thin film secondary battery (박막형 2차전지용 $SnO_2$음극 박막의 제작 및 특성 평가)

  • 이성준;신영화;윤영수;조원일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • In this study, Tin oxide thin film for secondary battery was deposited on Pt/Ti/Si(100). It was fabricated by r.f. reactive sputtering with Tin metal target. At constant power (130W), pressure (Base 5$\times$10$^{-6}$ Torr, working 5$\times$10$^{-3}$ Torr) and at room temperature, it was fabricated by Ar/O2 gas ratio. After deposition, we got AFM & SEM to investigated surface of thin films and had XRD to find crystalline of thin films. Charge/discharge characteristics were carried out in 1M LiPF$_{6}$ , EC:DMC = 1:1 liquid electrolyte using lithium metal at room temperature.

  • PDF

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • Lee, Won-Chang;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

Formation of ZnO ZnO thin films 3C-SiC buffer layer (3C-SiC 버퍼층위에 ZnO 박막 형성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.237-237
    • /
    • 2009
  • Zinc oxide (ZnO) thin film was deposited on Si substrates using polycrystalline (poly) 3C-SiC buffer layer, in which the ZnO film was grown by sol-gel method. Physical characteristics of the grown ZnO film was investigated experimentally by means of SEM, XRD, FT-IR (Furier Transform-Infrared spectrum), and AFM. XRD pattern was proved that the grown ZnO film on 3C-SiC layers had highly (002) orientation with low FWHM (Full width of half maxium). These results showed that ZnO thin film grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Synthesis of ITiO(Indium Titanium Oxide) particle by sol-gel and investigation on light transmittance of deposited ITiO thin film (졸-겔법에 의한 ITiO(Indium Titanium Oxide) 입자의 합성과 ITiO 박막의 광투과도 조사)

  • Go, Eun Ju;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.705-716
    • /
    • 2017
  • In this study, Indium-Titanium hydroxide particle with 0.5, 1.0, 1.5 wt% of $TiO_2$ were synthesized by sol process and adding the base, ITiO(Indium Titanium Oxide) particles were obtained by gelling at $200^{\circ}C$ and $500^{\circ}C$. The ITiO particle's size with gel process at $200^{\circ}C$ was smaller than ITiO particle's size with gel process $500^{\circ}C$. The ITiO particle with gel process at $200^{\circ}C$ was used to fabricate dense ITiO target. ITiO targets with 0.5, 1.0, 1.5 wt% of $TiO_2$ were fabricated and used to obtain ITiO thin films onto glass by sputtering. Among those sputtered ITiOs' thin films, ITiO thin film with 0.4 % of $O_2$ and 0.5 wt% of $TiO_2$ showed the lowest specific resistance, highest charge mobility and lowest carrier concentration. It was found the light transmittance of the ITiO film were increased highly compared to light transmittance of ITO (Indium Tin Oxide) thin film over Infrared wavelength ranges.

Bandgap Alteration of Transparent Zinc Oxide Thin Film with Mg Dopant

  • Salina, M.;Ahmad, R.;Suriani, A.B.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.64-68
    • /
    • 2012
  • We have successfully demonstrated a bandgap alteration of transparent zinc oxide (ZnO) thin film with Mg dopant by using sol-gel spin coating technique. By increasing the dopant from 0 to 30 atomic percent (at.%), a decrement value in the cutoff is observed, where the absorption edge shifts continuously to the shorter wavelength side, towards 300 nm. This resulted in a significant bandgap increment from 3.28 to 3.57 eV. However, the transmittance of the thin film at 350-800 nm gradually downgraded, from 93 to 80 % which is most probably due to the grain size that becomes bigger, and it also affected the electrical properties. The decrement from 45 to 0.05 mA at +10 V was observed in the I-V characteristics, concluding the significant relationship; where higher optical bandgap materials will exhibit lower conductivity. These findings may be useful in optoelectronics devices.

Improved Bias Stress Stability of Solution Processed ITZO/IGZO Dual Active Layer Thin Film Transistor

  • Kim, Jongmin;Cho, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.215.2-215.2
    • /
    • 2015
  • We fabricated dual active layer (DAL) thin film transistors (TFTs) with indium tin zinc oxide (ITZO) and indium gallium zinc oxide (IGZO) thin film layers using solution process. The ITZO and IGZO layer were used as the front and back channel, respectively. In order to investigate the bias stress stability of ITZO SAL (single active layer) and ITZO/IGZO DAL TFT, a gate bias stress of 10 V was applied for 1500 s under the dark condition. The SAL TFT composed of ITZO layer shows a poor positive bias stability of ${\delta}VTH$ of 13.7 V, whereas ${\delta}VTH$ of ITZO/IGZO DAL TFT was very small as 2.6 V. In order to find out the evidence of improved bias stress stability, we calculated the total trap density NT near the channel/gate insulator interface. The calculated NT of DAL and SAL TFT were $4.59{\times}10^{11}$ and $2.03{\times}10^{11}cm^{-2}$, respectively. The reason for improved bias stress stability is due to the reduction of defect sites such as pin-hole and pores in the active layer.

  • PDF

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.