DOI QR코드

DOI QR Code

Bandgap Alteration of Transparent Zinc Oxide Thin Film with Mg Dopant

  • Salina, M. (NANO ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA) ;
  • Ahmad, R. (NANO ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA) ;
  • Suriani, A.B. (NANO SciTech Centre, Institute of Sciences, Universiti Teknologi MARA) ;
  • Rusop, M. (NANO ElecTronic Centre, Faculty of Electrical Engineering and NANO SciTech Centre, Institute of Sciences, Universiti Teknologi MARA)
  • Received : 2011.11.03
  • Accepted : 2012.01.21
  • Published : 2012.04.25

Abstract

We have successfully demonstrated a bandgap alteration of transparent zinc oxide (ZnO) thin film with Mg dopant by using sol-gel spin coating technique. By increasing the dopant from 0 to 30 atomic percent (at.%), a decrement value in the cutoff is observed, where the absorption edge shifts continuously to the shorter wavelength side, towards 300 nm. This resulted in a significant bandgap increment from 3.28 to 3.57 eV. However, the transmittance of the thin film at 350-800 nm gradually downgraded, from 93 to 80 % which is most probably due to the grain size that becomes bigger, and it also affected the electrical properties. The decrement from 45 to 0.05 mA at +10 V was observed in the I-V characteristics, concluding the significant relationship; where higher optical bandgap materials will exhibit lower conductivity. These findings may be useful in optoelectronics devices.

Keywords

References

  1. M. Salina, M. Z. Sahdan, N. F. Jusoh, R. A. Kadir, and M.Rusop, Proceeding of ICEDSA2011, 423 (2011) [DOI: 10.1109/ICEDSA. 2010.5503027].
  2. S. Chiaria, M. Goano, and E. Belloti, J. Quant. Elec. 47, 661 (2011) [DOI: 10.1109/JQE.2011.2104940].
  3. H. K. Liang, S. F. Yu, and H. Y. Yang, App. Phys. Lett. 97, 241107 (2010) [DOI: 10.1063/1.3527922].
  4. A. E. Rakhshani, J. Appl. Phys. 108, 094502 (2010) [DOI: 10.1063/1.3490622].
  5. A. B. Djurisic, A. M. C. Ng, and X. Y. Chen, Prog. Quant. Elec. 34, 191 (2010) [DOI: 10.1016/j.quantelec.2010.04.001].
  6. T. Oshio, K. Masuko, A. Ashida, T. Yosgimura, and N. Fujimura, J. App. Phys. 103, 093717 (2010) [DOI: 10.1063/1.2905315].
  7. L. M. Li, Z. F. Du, and T. H. Wang, Sens. Act. B:Chem. 147, 165 (2010) [DOI: 10.1016/jsnb.2009.12.058].
  8. T. -H. Fang, S. -H. Kang, J. All. Comp. 492, 536 (2010) [DOI: 10.1016/.jallcom.2009.11.168].
  9. M. Ghosh,and A. Raychaudhuri, Trans. Nanotech. 10, 555 (2011) [DOI: 10.1109/TNANO.2010.2050899].
  10. S. B. Zhang, S. -H. Wei, A. Shunger, Phys. Rev. B, 63, 075205 (2001) [DOI: 10.1103/PhysRevB.63.075205 ].
  11. P. Kuznetsov, V. Lusanov, G. Yakushcheva, V. Jitov, L. Zakharov, I. Kotelyanskii, and V. Kozlovsky, IOP Conf. Ser.: Mater. Sci. Eng. 8, 012040 (2010) [DOI: 10.1088/1757-899X/8/1/012040].
  12. A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye, A. Waag, Superlattices and Microstructures, 38, 265 (2005) [DOI: 10.1016/ j.spmi.2005.08.025].
  13. I.-S. Kim, S. -H. Jeong, S. S. Kim, and B. -T. Lee, Semicond. Sci. Technol. 19, 29 (2004) [DOI: 10.1088/0268-1242/19/3/L06].
  14. C. H. Chia, Y. J. Lai, T. C. Han, J. W. Chiou, Y. M. Hu, and W. C. Chou, Appl. Phys. Lett. 96, 081903 (2010) [DOI: 10.1063/1.3327338].
  15. Y. Y. Kim, C. H. An, H. K. Cho, J. H. Kim, H. S. Lee, E. S. Jung, H. S. Kim,Thin Solid Films 516, 5602 (2008) [DOI: 10.1016/ j.tsf.2007.07.108].
  16. J. Liang, H. Wu, N. Chen, and T. Xu, Semicond. Sci. Technol. 20, L15 (2005) [DOI: 10.1088/0268-1242/20/5/L01]
  17. S. R. Meher, K. P. Biju and M. K. Jain, J. Sol-Gel Sci. Tech.52, 228 (2009) [DOI: 10.1007/s10971-009-2032-0]
  18. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, and H. Cui, Vacuum 77, 57 (2004) [DOI: 10.1016/j.vacuum.2004.08.003].
  19. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005) [DOI: 10.1063/1.1940137].
  20. Y. Zhang, H. Jia, P. Li, F. Yang, and Z. Zheng, Opt. Comm. 284, 236 (2011) [DOI:10.1016/j.optcomm.2010.08.084].
  21. A. Kaushal, and D. Kaur, Sol. En. Mater. Sol. Cells 93, (2009) [DOI: 10.1016/j.solmat.2008.09.039].

Cited by

  1. Mg and Al co-doping of ZnO thin films: Effect on ultraviolet photoconductivity vol.54, 2016, https://doi.org/10.1016/j.mssp.2016.06.018
  2. Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature vol.285, pp.24, 2012, https://doi.org/10.1016/j.optcom.2012.07.125
  3. Effect of growth temperature on structural, electrical, and optical properties of Gd-doped zinc oxide films vol.211, pp.3, 2014, https://doi.org/10.1002/pssa.201330345
  4. Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn vol.53, pp.1, 2018, https://doi.org/10.1007/s10853-017-1496-5
  5. Effect of substrate temperature and oxygen partial pressure on structural and optical properties of Mg doped ZnO thin films vol.41, pp.5, 2015, https://doi.org/10.1016/j.ceramint.2015.01.049
  6. Properties of ZnO nanostructures produced by mechanochemical-solid state combustion method using different precursors vol.193, 2017, https://doi.org/10.1016/j.matchemphys.2017.03.009
  7. Properties of Eu-doped zinc oxide thin films grown on glass substrates by radio-frequency magnetron sputtering vol.13, pp.9, 2013, https://doi.org/10.1016/j.cap.2013.08.007
  8. Synthesis and field electron emission properties of waste cooking palm oil-based carbon nanotubes coated on different zinc oxide nanostructures vol.656, 2016, https://doi.org/10.1016/j.jallcom.2015.09.277
  9. Fabrication of vertically aligned carbon nanotubes–zinc oxide nanocomposites and their field electron emission enhancement vol.90, 2016, https://doi.org/10.1016/j.matdes.2015.10.051
  10. Enhanced field electron emission of flower-like zinc oxide on zinc oxide nanorods grown on carbon nanotubes vol.149, 2015, https://doi.org/10.1016/j.matlet.2015.02.115
  11. Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application vol.121, pp.13, 2017, https://doi.org/10.1063/1.4979724
  12. Designing low thermal conductivity of RuO2 for thermoelectric applications vol.106, pp.6, 2015, https://doi.org/10.1063/1.4909513
  13. Band offset studies in pulse laser deposited Zn1−xCdxO/ZnO hetero-junctions vol.117, pp.22, 2015, https://doi.org/10.1063/1.4922425
  14. Evolution of Optical Band Gap and Related Properties in Ni1−xCoxO Nanoparticles pp.2250-1754, 2018, https://doi.org/10.1007/s40009-018-0727-x