• Title/Summary/Keyword: oxidant induction

Search Result 77, Processing Time 0.031 seconds

Regulation of Nrf2-Mediated Phase II Detoxification and Anti-oxidant Genes

  • Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • The molecular mechanisms by which a variety of naturally-occurring dietary compounds exert chemopreventive effects have been a subject of intense scientific investigations. Induction of phase II detoxification and anti-oxidant enzymes through activation of Nrf2/ARE-dependent gene is recognized as one of the major cellular defense mechanisms against oxidative or xenobiotic stresses and currently represents a critical chemopreventive mechanism of action. In the present review, the functional significance of Keap1/Nrf2 protein module in regulating ARE-dependent phase II detoxification and anti-oxidant gene expression is discussed. The biochemical mechanisms underlying the phosphorylation and expression of Keap1/Nrf2 proteins that are controlled by the intracellular signaling kinases and ubiquitin-mediated E3 ligase system as well as control of nucleocytoplasmic translocation of Nrf2 by its innate nuclear export signal (NES) are described.

Regulation of the sufABCDSE Operon by Fur

  • Lee, Joon-Hee;Yeo, Won-Sik;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • A promoter that is inducible by paraquat and menadione, the superoxide generators, independently of soxRS has been found in front of the sufABCDSE operon in Escherichia coli. Based on the observation that SufA is a holomog of IscA that functions in the assembly of iron sulfur cluster and the sufA promoter (sufAp) contains a putative Fur-binding consensus, we investigated whether this gene is regulated by Fur, a ferric uptake regulator, When examined in several sufAp-lacZ chromosomal fusion strains, sufAp was induced by EDTA, an iron chelator and a well-known Fur-inducer, The basal level of sufA expression increased dramatically in fur mutant, suggesting repression of sufAp by Fur. The derepression in fur mutant and EDTA-induction of sufA expression required nucleotides up to -61, where a putative Fur box is located. Purified Fur protein bound to the DNA fragment containing the putative Fur box between -35 and -10 promoter elements. The regulation by Fur and menadione induction of sufAp acted independently. The rpoS mutation increased sufA induction by menadione, suggesting that the stationary sigma factor RpoS acts negatively on sufA induction.

STUDIES ON THE ANTI-OXIDANT COMPONENTS OF KOREAN GINSENG

  • Han Byung Hoon;Park Myung Hwan;Woo Lin Keun;Woo Won Sick;Han Yong Nam
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.13-17
    • /
    • 1978
  • This paper is concerned with the studies on the effective components of anti-oxidant activity, with a view to demonstrate the anti-aging activity of Korean ginseng. Feeding the extract of Korean ginseng or its effective component to mice inhibited strongly the induction of lipid peroxidation produced by ethanol intoxication. From the extract of Korean red ginseng, one effective component Compound A, mp.143, $C_6H_6O_3$ was isolated by chromatographic purification and its chemical structure was determined as 2-meth-y1-3-hydroxy-${\gamma}-pyrone(maltol).$

  • PDF

4'-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages

  • Yoo, Ok-Kyung;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.381-385
    • /
    • 2019
  • We attempted to examine anti-inflammatory and anti-oxidant effects of 4'-O-${\beta}$-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin $E_2$ ($PGE_2$) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.

Anti-aging Effect on Skin with the needles of red pine, Pinus densiflora (적송엽(赤松葉)이 피부(皮膚)의 노화(老化)에 미치는 영향(影響))

  • Park, Seong-Kyu;Lee, Jong-Chan;Ahn, Soo-Mi;Lee, Jin-Young;Kim, Youn-Joon;Hwang, Jae-Sung;Lee, Byeong-Gon;Chang, Ih-Seoup
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.1-10
    • /
    • 2005
  • Objectives : We investigated the anti-aging effect on skin with the extract of the needles of red pine, Pinus densiflora. Methods : We measured various effects related to skin such as the anti-oxidant effect, the protection against ultraviolet (UV) irradiation, the inhibition of reactive oxygen species (ROS) generation, the induction of heat shock protein 70 (HSP70), the reduction of matrix metalloproteinase-2 (MMP-2) synthesis and senescent cell. Results : The results were as follows : The extract of the needles of red pine (RP) had the potent anti-oxidant effect and the ROS scavenging effect. Also RP preserved the systemic anti-oxidant enzyme system (superoxide dismutase and catalase) from UVB irradiation. RP protected the cell membrane from the damages induced by UVB irradiation. RP induced HSP70, a mediator of resistance to UVB irradiation. RP reduced the synthesis of MMP-2 induced by UVB irradiation. And RP inhibited the amount of senescent-associated (SA) ${\beta}-galactosidase$ staining, as a marker of replicative senescence. Conclusions : The results of our study indicate that the extract of the needles of red pine, Pinus densiflora, has anti-aging effects on skin.

  • PDF

YS 49, a Synthetic Isoquinoline Alkaloid, Protects Sheep Pulmonary Artery Endothelial Cells from tert-butylhydroperoxide-mediated Cytotoxicity

  • Chong, Won-Seog;Kang, Sun-Young;Kang, Young-Jin;Park, Min-Kyu;Lee, Young-Soo;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;ChoiYun, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.283-289
    • /
    • 2005
  • Endothelium, particularly pulmonary endothelium, is predisposed to injury by reactive oxygen species (ROS) and their derivatives. Heme oxygenase (HO) has been demonstrated to provide cytoprotective effects in models of oxidant-induced cellular and tissue injuries. In the present study, we investigated the effects of YS 49 against oxidant [tert-butylhydroperoxide (TBH)]-induced injury using cultured sheep pulmonary artery endothelial cells (SPAECs). The viability of SPAECs was determined by quantifying reduction of a fluorogenic indicator Alamar blue. We found that TBH decreased cell viability in a timeand concentration-dependent manner. YS 49 concentration- and time-dependently increased HO-1 induction on SPAECs. As expected, YS 49 significantly decreased the TBH-induced cellular injury. In the presence of zinc protophorphyrin, HO-1 inhibitor, effect of YS 49 was significantly inhibited, indicating that HO-1 plays a protective role for YS 49. Furthermore, YS 49 showed free radical scavenging activity as evidenced by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and inhibition of lipid peroxidation. However, YS 49 did not inhibit apoptosis induced by lipopolysaccharide (LPS) in SPAECs. Taken together, HO-1 induction along with strong antioxidant action of YS 49 may be responsible for inhibition of TBH-induced injury in SPAECs.

Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

  • Jung, Sung-Hyun;Kim, Hyung-Jin;Oh, Gi-Su;Shen, AiHua;Lee, Subin;Choe, Seong-Kyu;Park, Raekil;So, Hong-Seob
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1(HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.

Skin Protective Effect of Methylated Marliolide through Induction of NRF2/ARE (메틸말리올라이드의 NRF2/ARE 유도를 통한 피부 세포 보호 효과)

  • Lee, June;Kim, Ki Seong;Lee, Hyun Gy;Park, Changho;Ku, Minsu;Keum, Young-Sam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.375-379
    • /
    • 2018
  • In the present study, we have investigated whether methylated marliolide could induce NRF2 thereby exerting anti-oxidant effects. MTT assay showed that methylated marliolide did not exhibit cytotoxicity on HaCaT cells. Methylated marliolide induced a higher ARE-dependent luciferase activation in HaCaT ARE-GFP-luciferase cells, compared with resveratrol. In addition, exposure of methylated marliolide to HaCaT cells significantly induced NRF2 and transcriptionally activated HO-1 and NQO1, both of which are target genes of NRF2. Finally, methylated marliolide protected HaCaT cells against TPA-induced oxidative damages on nucleotides and lipids. Together, results shows that methylated marliolide could suppress oxidative damages through induction of NRF2 which implies that methylated marliolide might serve as a good candidate for novel cosmetic ingredient with anti-oxidant effects.

CD26: A Prognostic Marker of Acute Lymphoblastic Leukemia in Children in the Post Remission Induction Phase

  • Mehde, Atheer Awad;Yusof, Faridah;Mehdi, Wesen Adel;Zainulabdeen, Jwan Abdulmohsin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5059-5062
    • /
    • 2015
  • Background: ALL is an irredeemable disease due to the resistance to treatment. There are several influences which are involved in such resistance to chemotherapy, including oxidative stress as a result of the generation of reactive oxygen species (ROS) and presence of hypodiploid cells. Cluster of differentiation 26 (CD26), also known as dipeptidyl peptidase-4, is a 110 kDa, multifunctional, membrane-bound glycoprotein. Aim and objectives: The aim of this study was to evaluate the clinical significance of serum CD26 in patients with acute lymphoblastic leukaemia patients in the post remission induction phase, as well as the relationship between CD26 activity and the oxidative stress status. Materials and Methods: CD26, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI), in addition to activity of related enzymes myeloperoxidase, glutathione-s-transferase and xanthine oxidase, were analysed in sixty children with acute lymphoblastic leukaemia in the post remission induction phase. Results: The study showed significant elevation in CD26, TOS and OSI levels in patients with acute lymphoblastic leukaemia in the post remission induction phase in comparison to healthy control samples. In contrast, myeloperoxidase, glutathione-s-transferase and xanthine oxidase activities were decreased significantly. A significant correlation between CD26 concentration and some oxidative stress parameters was evident in ALL patients. Conclusions: Serum levels of CD26 appear to be useful as a new biomarker of oxidative stress in children with acute lymphoblastic leukaemia in the post remission induction phase, and levels of antioxidants must be regularly estimated during the treatment of children with ALL.

Neuroprotective Effects of Ethanol Extract of Ganoderma lucidum L. on murine hippocampal cells (영지 에탄올 추출물의 마우스 유래 뇌 해마세포 보호효과)

  • Lee, Seung Cheol;Im, Nam-Kyung;Jeong, Hye Young;Choi, Eun Hwa;Jeon, Soo Myeong;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.161-167
    • /
    • 2014
  • Ganoderma lucidum L. (GL) is a traditional oriental medicine that has been widely used as anti-inflammatory, antitumor and anti-oxidant in Korea and other Asian countries. In this study, we investigated the ethanol extract of GL has neuroprotective effects in murine hippocampal HT22 cells. GL ethanol extract has the potent neuroprotective effects on glutamate-intoxicated cells by inducing the expression of heme oxygenase (HO)-1 in HT22 cells. GL ethanol extract increased JNK phosphorylation. Obviously, When we treated the GL extract with c-Jun N-terminal kinase (JNK) inhibitor (SP600125), HO-1 expression was reduced. Moreover, we found that GL treatment caused the nuclear accumulation of Nrf2. In conclusion, the ethanol extract of GL significantly protects glutamate-induced oxidative damage by induction of HO-1 via Nrf2, JNK pathway in mouse hippocampal HT22. These results suggest that GL ethanol extract would be a good source for taking active compounds and may be a potential pharmaceutical products for brain disorder induced by neuronal damage and oxidative stress.