• Title/Summary/Keyword: overhead crane

Search Result 76, Processing Time 0.024 seconds

Development of partial state feedback control algorithm for nonlinear overhead crane whose two axes are moved simultaneously (두 축이 동시에 운동하는 비선형 천장 크레인의 부분상태 궤환제어 알고리즘 개발)

  • 이종규;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.395-398
    • /
    • 1996
  • In this study, when the nonlinear overhead crane which allows simultaneously travel and traverse motion moves a desired transport route, the object suspended the end of rope does undesirable swing motion. Nonlinear overhead crane pertubes in the vicinity of an operating point, therefore the nonlinear overhead crane is modified to linear overhead crane for the operating point. The linear overhead crane was controlled to swing angles of the object by the ratio of torque inputs to motors of the girder and the trolley. As a basis for the result of the linear overhead crane, the nonlinear overhead crane was controlled swing angles of the object and positions of the overhead crane without collision with environmental equipment by partial state feedback control.

  • PDF

Overhead Crane Controllers and Ergonomic Problems in Industrial Field (산업현장의 천장크레인 조작장치 사용 현황과 인간공학적 문제점)

  • Park, Jae Hee;Kim, Seung Hee
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • Overhead cranes are the most widely used and have been identified as one of the main causes of fatal accidents. Although structural, mechanical and electrical safety standards for overhead cranes have been established to some extent, ergonomic standards related to crane controllers are rarely established. As a result, many crane accidents are reported to be caused by operator's error. To investigate the actual use of crane controllers in the industrial field, we surveyed 82 overhead cranes in 15 workplace and interviewed workers operating them. This study has presented the ergonomic problems related to the crane controllers in the field. As a result of investigation, it was found that the direction control signs, the sign language, and the button layout on the pendant switches and remote controllers are not standardized, which can cause a human error. To reduce human errors in overhead crane operation, ergonomic standards for controllers should be reflected on the government legislation or standards.

Analysis of Stability for Overhead Crane Systems (천정 크레인시스템의 안정성 해석)

  • Ban Gab Su;Lee Kwang Ho;Mo Chang Ki;Lee Jong Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • Overhead crane systems consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. The dynamic system of these systems becomes a nonlinear state equations. These equations are obtained by the nonlinear equations of motion which are derived from transfer functions of driving motors and equations of motion for objects. From these state equations, Lyapunov functions of overhead crane systems are derived from integral method. These functions secure stability of autonomous overhead crane systems. Also constraint equations of driving motors of trolley, girder, and hoist are derived from these functions. From the results of computer simulation, it is founded that overhead crane systems is secure.

A Study on An Optimal Controller of Overhead Crane using the GAs (유전자 알고리즘을 이용한 천정 크레인의 최저제어기에 관한 연구)

  • 김길태;박예구;최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.112-117
    • /
    • 1997
  • This paper presents a GA(Genetic Algorithms)-Optical control strategy for the control of the swing motion and the transverse position of the overhead crane. The overhead crane system is defined uncertain due to unknown system parameters such as payload and trolly mass. To control the overhead crane. the GA-Optimal control scheme is suggested. which transfers a trolly to a desired place as fast as possible and minimizes the swing of the payload during the transfer. The genetic algorithms are applied to fine digital optimal feedback gains. A computer simulation demonstrate the performance of the proposed the GA-digital optimal controller for the overhead crane.

  • PDF

Development of the Position Control Algorithm for Nonlinear Overhead Crane Systems (비선형 천장 크레인시스템의 위치제어 알고리즘 개발)

  • 이종규;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.142-147
    • /
    • 2000
  • An overhead crane system which transports an object by girder motion, trolley motion, and hoist motion becomes a nonlinear system because the length of a rope changes. To develope the position control algorithm for the nonlinear crane systems, we apply a nonlinear optimal control method which uses forward and backward difference methods and obtain optimal inputs. This method is suitable for the overhead crane system which is characterized by the differential equation of higher degree and swing motion. From the results of computer simulation, it is founded that the position of the overhead crane system is controlled, and the swing of the object is suppressed.

  • PDF

Anti-Swing Control of Overhead Crane System using Sum of Squares Method (천정형 크레인의 흔들림 억제제어에 관한 SOS 접근법)

  • Hong, Jin-Hyun;Kim, Cheol-Joong;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.407-413
    • /
    • 2013
  • This paper proposes anti-swing control of overhead crane system using sum of squares method. The dynamic equations of overhead crane include nonlinear terms, which are transformed into polynomials by using Taylor series expansion. Therefore the dynamic equation of overhead crane can be changed to the system of polynomial equation. On the basis of polynomial dynamics of crane system, we propose the Sum of Squares (SOS) conditions considering the input constraints. In addition, control gains are obtained by numerical tool which is called by SOSTOOL. The effectiveness of the proposed method is demonstrated by numerical simulation.

The Modelling of Overhead Crane System (천장 크레인시스템의 모델링)

  • Lee, Jong-Gyu;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.166-171
    • /
    • 1999
  • An overhead crane system consists of trolley, girder, rope, object, trolley motor, girder motor, and hoist motor. An analytic model which derived from the modelling of the overhead crane system is nonlinear model which includes the swing and the twist angle of the object. this model consists of the equation of motion for motors and object. If the swing angle and the acceleration of Z for the object are small, this model becomes a simple nonlinear model which doesn't include the swing and the twist angle of the object. From the results of computer simulation, the characteristics of an actual overhead crane system could be predicted by the simple nonlinear model.

  • PDF

Position and load-swing control of a 2-dimensional overhead crane (2차원 천정크레인의 위치 및 이송물의 흔들림제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1683-1693
    • /
    • 1997
  • In this paper, a new nonlinear dynamic model is derived for a 2-dimensional overhead crane based on a new definition of 2-degree-of-freedom swing angle, and a new anti-swing control law is proposed for the crane. The dynamic model and control law take simultaneous travel and traverse motions of the crane into consideration. The model is first linearized for small motions of the crane load about the vertical stable equilibrium. Then the model becomes decoupled and symmetric with respect to the travel and traverse axes of the crane. From this result, a decoupled anti-swing control law is proposed based on the linearized model via the loop shaping and root locus methods. This decoupled method guarantees not only fast damping of load-swing but also zero steady state position error with optimal transient response for the 2-dimensional motion of the crane. Finally, the proposed control method is evaluated by controlling the simultaneous travel and traverse motions of a 2-dimensional prototype overhead crane. The effectiveness of the proposed control method is then proven by the experimental results.

An Optimal Control of the Crane System Using a Genetic Algorithm (유전알고리즘을 이용한 크레인 시스템의 최적제어)

  • 최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.498-504
    • /
    • 1998
  • This paper presents an optimal control algorithm for the overhead crane. To control the swing motion and the position tracking of the payload of the overhead crane a state feedback control algorithm is applied. by using a hybrid genetic algorithm the feedback gains of the state feedback is optimized to minimize the cost function composed of position errors and payload swing angle under unknown constant disturbances. Computer simulation is performed to demonstrate the effectiveness of the proposed control algorithm.

  • PDF

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF