• Title/Summary/Keyword: overhead catenary line

Search Result 52, Processing Time 0.023 seconds

Analysis on Installation Condition According to Dynamic Characteristics for Overhead Catenary System (전차선로 동적특성에 따른 설치상태 분석)

  • Park, Young;Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1605-1609
    • /
    • 2016
  • The measurement of current collection performance between pantograph and contact wire of overhead catenary system is intended to prove the safety of operation and the quality of the current collection system. The results of interaction performance of current collection system are required for approving with commercial operation on railway lines. The methods of interaction performance of current collection system are defined on interactional standards such as IEC 62486 and EN 50317. In this paper, the interaction performance is evaluated by the percentage of arcing on Honam high-speed line and the results are used for adjustment of the overhead catenary line structure. The experimental results in Honam high-speed line confirm that the duration of an arc lasting longer 25 ms between pantograph and contact wire was depended on the conditions of overhead contact line after installation.

Dip Estimation for Overhead Transmission Conductor using Catenary Angle (카테너리 각도를 이용한 가공송전도체의 이도 추정)

  • Kim, Sung-Duck;Sohn, Hong-Kwan;Jang, Tae-In
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.112-119
    • /
    • 2007
  • Under normal operating condition, the conductor of overhead transmission line could be always hold it's clearance within the safety margin that is specified in the line design guide of power company. Hence it may be very important to measure/or monitor the dip of the conductor, when building a new line, re-tensioning for an aged conductor, or monitoring dynamic line rating to maximize power capability. In this paper, we suggest a new method to estimate the dip and tension by catenary angle of the conductor. Since most conductors in overhead transmission lines show typical catenary curves, it can be uniquely determined the catenary curve for the conductor from the catenary angle at tower. Based on the catenary curve, the dip or horizontal tension can be easily estimated. Through some simulation and simple experimental results, it is verified that the suggested method can be effectively applied to measure/or monitor conductor dips and tensions in the overhead transmission lines.

Development of Catenary Stagger and Height Measurement System using Laser (레이저를 이용한 전차선 편위 및 높이 측정 시스템 개발)

  • Song, Sung-Gun;Lee, Teak-Hee;Song, Jae-Yeol;Park, Seong-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.569-574
    • /
    • 2008
  • Catenary and Pantograph are used to transmit electrical energy to electric railways. Catenary (Overhead Contact Lines) should be installed precisely and managed for stable train operations. But external factors such as weather, temperature, etc., or aging affect catenary geometry. Changed catenary stagger and height cause high voltage spark or instant electric contact loss. Big spark derived from contact loss can damage the pantograph carbon strip and overhead contact lines that might interrupt the train operations. Therefore, to prevent a big scale spark or electric contact loss, catenary maintenance are required catenary geometry measurement systems with catenary maintenance capability. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Laser Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system detects suspicious overhead line sections with excessive stagger and height stagger variance.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

A Study on the Uplift for Applying of Heavy Simple Catenary System in a Overhead Rigid Conductor Rail Transition Section (강체전차선로 이행구간 Heavy Simple Catenary 적용을 위한 압상량 고찰)

  • Kim, Wan-il;Park, Weon-Chan;Lee, Jae-Bong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.688-694
    • /
    • 2018
  • The transition section of the overhead rigid conductor rail (ORCR) consists of a direct induction device and a limit point to prevent the power supply failure and failure of the electric railway vehicle pantograph due to the difference of the uplift in the catenary line. In T-Bar transition section, a twin simple catenary is mostly installed between the overhead catenary system (OCS) in the ground section and the ORCR in the underground section. In this paper, we compare and analyze the possibility of replacing the twin simple catenary with heavy simple catenary. The reliability of numerical analysis results was confirmed by comparing field test with numerical results. Comparing the numerical results of the twin simple catenary with the heavy simple catenary in the transition section, the difference uplift is 5.9[mm] on average. When applying heavy simple catenary instead of twin simple catenary, the slight difference of uplift can be compensated by adjusting the height of hanger-ear or support bracket.

Overhead Catenary Measurement by High-speed Image Analysis (고속 이미지 분석에 의한 전차선로 계측)

  • Park, Young;Lee, Ki-Won;Cho, Hyeon-Young;Kwon, Sam-Young;Park, Chan-Bae;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.824-828
    • /
    • 2007
  • With increasing interest in the reduction of cost for operation and maintenance of overhead catenary system, various methods of condition monitoring have been developed and used in with high-speed analysis and advanced image processing techniques. This study utilizes a high-speed camera as inspecting system to measure the wear, stagger, hight and arc extinguishing test of overhead catenary system. All measuring image were captured by a high speed CMOS camera with PCI express output, which can acquire up to 1000 frames per second with the resolution 1024 × 1280 pixels. Line type laser source with a power equal to 300 mW and the National Instrument LabVIEW (8.0) based on vision acquisition software have been used in application programming interface for image acquisition, display, and storage. The proposed high-speed camera system is finally applied to measure the overhead catenary system showing promising on-field applications

  • PDF

Implementation of Electrical Property Assessment System for Overhead Contact Lines (전차선로 전기적 특성 평가 시스템 구현)

  • Oh, Seok-Yong;Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.497-503
    • /
    • 2011
  • Currently in Korea, the simple catenary type overhead contact line system is being applied to both conventional lines and high speed lines of electric railway, and circulation current flowing into the catenary system frequently bring undesirable consequences. Namely, the connector wire has many problems according to a flow of excessive circulation current and arc current on catenary when an electric train runs at high speed. This paper presents the development and application of a real-time data acquisition system designed to measure the electrical characteristics of an overhead catenary system in electric railways. The developed system is capable of storing data of a 25 kV power source in a live wire state through a telemetry environment. The field test results show that the proposed technique and the developed system can be practically applied to measure characteristics of current of an overhead catenary system.

A Study on the Development of Catenary stagger and height Measurement System (전차선 편위 및 높이 측정 시스템 개발에 관한 연구)

  • Song, Sung-Gun;Park, Seong-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.299-304
    • /
    • 2008
  • Catenary and Pantograph are a power supply devices for electric trains and shall be steadily contacted. Rail catenary must be installed precisely and managed for stable train operations. But external factors such as weathers, nature, etc., or aging affect catenary geometry. Changed catenary height causes high voltage spark or instant electric disconnection. Big spark and disconnection damage pantograph shoe and catenary coating and might interrupt rail operations. To prevent a big scale spark or electric disconnection catenary maintenance shall be required with catenary geometry measurement systems. In this paper, we describe the development of catenary height and stagger measurement system. The catenary height and stagger measurement system uses Acuity company's AR4000 Range Finder for distance measurement and AccuRange Line Scanner for degree measurement. This system reports suspicious overhead line sections with excessive height and stagger variance.

  • PDF

An Analysis on Electrical Property Measurement of Catenary System in Railway (철도 전차선로 전기적 특성 검측 기술 분석)

  • Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Lee, Ki-Won;Gwon, Sam-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.115-115
    • /
    • 2010
  • This paper introduces a measurement system that measures behavior and electrical characteristics of overhead contact line irregular sections in real-time. For verification, we developed a prototype of the real-time overhead contact line irregular section behavior measurement system and a monitoring system for field tests. The current and temperature of contact wires and messenger wires were measured real-time by applying the system at KTX a commercial line. Therefore, acquiring data is possible with the developed system and this system that measures one of the fundamental and key factors, the catenary current, should be applicable to various areas such as detecting characteristics for designing overhead contact lines, enhancing speed, and enhancing energy.

  • PDF

A Study on Speed-up of a Transition Section Between Overhead Catenary and Rigid Conductor System (강체 전차선로이행구간 고속화 방안 연구)

  • Lee, Kiwon;Choi, Tae-Su;Cho, Yong Hyeon;Park, Young;Jun, Hyo Chan;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.467-473
    • /
    • 2018
  • R-Bar(Overhead Rigid Conductor system) is being developed for the high-speed in Europe because it has an advantage of cross section area reduction of tunnel compared with OCS (Overhead Catenary Line). Because there are lots of underground sections and mountains in korea, it is necessary to develop the R-Bar for a high-speed line. In this study, a method on speed-up of transition section between OCS and R-Bar is proposed. The commercial program, DAFUL, is used to predict a dynamic characteristics between Overhead Line and pantograph. The program is evaluated according to EN 50318 which is the European Norm for evaluation of the program. Using the evaluated modeling and method, a method for the max. speed of 250 km/h of transition section is proposed.