• Title/Summary/Keyword: over-pressure

Search Result 3,642, Processing Time 0.039 seconds

A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics) (압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향))

  • 류능환;강예묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

A Study on the Attenuation of Flip-over Vibration in the Flat Blade Windshield Wiper (플랫 블레이드 윈드실드 와이퍼의 역전 진동 저감에 관한 연구)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.974-984
    • /
    • 2012
  • This research introduces a new method to attenuate flip-over vibration generation in the flat blade windshield wiper by adjusting the contact pressure between the windshield glass and the blade. The knocking force in the flip-over action of the blade is decreased by inducing gradual tilting-over along the rubber strip of the blade. This gradual tilting-over is induced by introducing a non-uniform contact pressure distribution between the blade and windshield glass. The contact pressure distribution is adjusted by controlling the unloaded profile of the body spring in the blade using a procedure proposed in a previous study. Two blades, one blade designed to generate a uniform pressure distribution and the other designed to generate non-uniform pressure distribution, are developed using the procedure. Contact pressure distributions of the developed blades are measured using a special device and compared with the intended distributions confirming the similarities between the two groups. Vertical and lateral vibrations of the two blades are measured under realistic operating condition simulated by a wiper test rig. The vertical vibrations of the blade with non-uniform contact pressure are substantially smaller than corresponding vibrations of the blade with uniform contact pressure over the entire rubber strip.

Numerical study of compression waves passing through two-continuous ducts (두 연속 덕트를 전파하는 압축파의 수치해석적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

Circadian Biorhythmicity in Normal Pressure Hydrocephalus - A Case Series Report

  • Herbowski, Leszek
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.151-160
    • /
    • 2022
  • Continuous monitoring of intracranial pressure is a well established medical procedure. Still, little is known about long-term behavior of intracranial pressure in normal pressure hydrocephalus. The present study is designed to evaluate periodicity of intracranial pressure over long-time scales using intraventricular pressure monitoring in patients with normal pressure hydrocephalus. In addition, the circadian and diurnal patterns of blood pressure and body temperature in those patients are studied. Four patients, selected with "probable" normal pressure hydrocephalus, were monitored for several dozen hours. Intracranial pressure, blood pressure, and body temperature were recorded hourly. Autocorrelation functions were calculated and cross-correlation analysis were carried out to study all the time-series data. Autocorrelation results show that intracranial pressure, blood pressure, and body temperature values follow bimodal (positive and negative) curves over a day. The cross-correlation functions demonstrate causal relationships between intracranial pressure, blood pressure, and body temperature. The results show that long-term fluctuations in intracranial pressure exhibit cyclical patterns with periods of about 24 hours. Continuous intracranial pressure recording in "probable" normal pressure hydrocephalus patients reveals circadian fluctuations not related to the day and night cycle. These fluctuations are causally related to changes in blood pressure and body temperature. The present study reveals the complete loss of the diurnal blood pressure and body temperature rhythmicities in patients with "probable" normal pressure hydrocephalus.

A Modelling of Structural Excitation Forces Due to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류 경계층 내 벽면 변동 압력의 구조 기진력 모델링)

  • 홍진숙;신구균;김상윤
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.226-233
    • /
    • 2001
  • It is essential to analyze structural vibrations due to turbulent wall pressure fluctuations over a body surface which moves through a fluid, because the vibrations can be a severe source of noise affecting to passengers in airplanes and SONAR performance. Generally, this kind of problems have been solved for very simplified models, e.g. plates, which can be applied to the wavenumber domain analysis. In this paper, a finite element modeling of the walt pressure fluctuations is investigated, which can be applied to those over arbitrary smooth surfaces. It is found that the modeled wall pressure fluctuation at nodes becomes uncorrelated at higher frequencies and at lower flow speeds, and the response is over-estimated due to the aliased power. Then the frequency range available for uncorrelated loading model and two power correction schemes are presented.

  • PDF

A Modelling of Structural Excitation Forces Due to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류 경계층 내 벽면 변동 압력의 구조 기진력 모델링)

  • Hong, Chin-Suk;Shin, Ku-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.817-824
    • /
    • 2000
  • It is essential to analyze structural vibrations due to turbulent wall pressure fluctuations over a body surface which moves through a fluid, because the vibrations can be a severe source of noise affecting to passengers in airplanes and SONAR performance. Generally, this kind of problems have been solved for very simplified models, e.g. plates, which can be applied to the wavenumber domain analysis. In this paper, a finite element modeling of the wall pressure fluctuations over arbitrary smooth surfaces is investigated. It is found that the modeled wall pressure fluctuation at nodes becomes uncorrelated at higher frequencies and at lower flow speeds, and the response is over-estimated due to the aliased power. Finally, the frequency range available for uncorrelated loading model and two power correction schemes are presented.

  • PDF

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF

Effect of Corrected Hydrostatic Pressure in Shallow-Water Flow over Large Slope (대경사를 지나는 천수 흐름에서 수정된 정수압의 효과)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1177-1185
    • /
    • 2014
  • This study suggests a new hydrostatic pressure distribution corrected for nonuniform flow over a channel of large slope. For analyzing shallow-water flows over large slope accurately, it is developed a finite-volume model incorporating the pressure distribution to the shallow water equations. Traveling speed of the hydraulic jump downstream a parabolic bump in the drain case is quite reduced by the weakened bottom gradient source term in the model with the pressure correction. In simulating the dam-break flow over a triangular sill, it is identified that the model with pressure correction could capture the water surface by the digital imaging measurements more than the model without that. Due to the pressure correction decreasing the reflected flows on and increasing overflows over the sill, there are good agreements in the experiment and the simulation with that. Therefore, this model is expected to be applied to such practical problems as flows in the spillway of dam or run-up on the beach.

Development of the physical pressure measurement device and orthodontic chair to prevent pressure sores (욕창 예방을 위한 체압 측정 장치 및 교정용 의자 개발)

  • Kang, Dong-Won;Kim, Kyoung-Myoung;Jang, Kyung-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1974_1975
    • /
    • 2009
  • The chairbound, handicapped person often requires a cushion to distribute the supportive forces over the largest area possible in order to reduce the risk of the development of a pressure sore. Pressure sores are areas of damaged skin caused by staying in one position for too long and can cause serious infections, some of which are life-threatening. When sitting upright, the greatest proportion of body weight is centerd over the ischial tuberosities. So, it is important that comfortable seating and largest distribution of pressure to prevent pressure sores. Therefore, the objective of this study was to develop the physical pressure measurement device and orthodontic chair to prevent pressure sores.

  • PDF