HEVC 표준에 적용된 인루프 필터링 방법인 De-blocking filter와 SAO(Sample Adaptive Offset)은 영상의 블록화 현상(Blocking artifacts)과 ringing artifacts를 효과적으로 제거하여 부호화 효율 및 주관적 화질 향상을 달성하였다. 하지만, 인루프 필터링 사용에도 불구하고, Corner outlier artifacts라 불리는 블록 경계의 모서리 부분에서 발생하는 2차원 형태의 블록화 현상은 쉽게 제거하지 못하는 문제점을 보인다. 본 논문에서는 Corner outlier 픽셀 탐색 및 판단과정, 해당 outlier 픽셀의 필터링 방법을 통하여 이러한 artifacts를 감소시키는 방법을 제안한다. 실험결과, 제안하는 방법은 화면간 예측에서 약간의 압축 효율 향상을 보였으며, 특히 영상의 주관적 화질 측면에서 개선된 효과를 나타내었다.
본 연구에서는 요일별 교통량 변동 패턴 기반 평활화법을 활용하여 정량적 이상치 판정 알고리즘을 개발하였다. 또한 개발된 알고리즘을 활용하여 2010년 일반국도 상시조사 지점 중 14개 지점의 교통량 자료에 대한 이상치 필터링을 수행하여 알고리즘의 적합성 여부를 평가하였다. 그 결과 정상일 필터링율은 98.2%, 이상일 중 오필터링율은 8.0%로 평가되었다. 따라서 본 연구에서 개발된 알고리즘은 수집된 교통량 자료의 1차적인 이상치 필터링에 충분히 적용 가능할 것이다.
This paper prolposes a VFM (Variable Fading Memory)Kalman filtering and applies it to the parameter estimation for time-varying signals. By adaptively calculating the fading memory, the proposed algorithm does not require any predetermined fading memory when estimating the time-varying signal parameter. Moreover, the proposed algorithm has faster convergence speed than fixed fading memory one in case the signal contains an impulsive outlier. The performance of parameter estimation for time-varying signal is evaluated by computer simulation for two cases, one of which is the chirp signal whose frequency varies linearly with time and the other is the chip signal with an impulsive outlier. The experimental results show that the VFM Kalman filtering estimates the parameter of the chirp signal more rapidly than the fixed fading memory one in the region of an outlier.
In this study, we propose a compensation method of raw LiDAR data with noise and noise filtering for signal processing of LiDAR sensors during the development phase. The raw LiDAR data include constant errors generated by delays in transmitting and receiving signals, which can be resolved by LiDAR signal compensation. The signal compensation consists of two stage. First one is LiDAR sensor calibration for a compensation of geometric distortion. Second is walk error compensation. LiDAR data also include fluctuation and outlier noise, the latter of which is removed by data filtering. In this study, we compensate for the fluctuation by using the Kalman filter method, and we remove the outlier noise by applying a Gaussian weight function.
지능형 교통체계구축과 교통 혼잡이 증가하면서 이용자는 과거보다 양질의 통행시간정보를 요구하고 있다. 기존 연구에서는 단속류, 연속류 모두 AVI검지기 자료를 이용한 이상치제거 및 통행시간 산출에 대한 연구가 많이 이루어져왔다. 현재 한국도로공사에서는 TCS(Toll Collection System)를 기반으로 정보제공을 준비 중에 있으며, TCS 데이터는 운전자가 실제교통상황을 경험한 동적특성을 가진 통행시간이 수집된 자료로 통행시간 추정자료로 잠재력이 크다. 그러나 '시간처짐현상'이 발생하고 속도위반, 휴게소, 고장 등으로 인해 평균통행시간보다 작거나 큰 이상치와 결측데이터가 존재하여 기존 방법을 적용하는데 효과적이지 못한 것으로 나타났다. 따라서 본 연구에서는 TCS 데이터에 맞는 이상치제거 및 결측보정 알고리즘을 개발하였다. 기존알고리즘과 비교한 결과 개발 알고리즘이 더 효과적인 것으로 나타났다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3815-3835
/
2022
Density-based outlier detection is one of the hot issues in data mining. A point is determined as outlier on basis of the density of points near them. The existing density-based detection algorithms have high time complexity, in order to reduce the time complexity, a new outlier detection algorithm DODMD (Density-based Outlier Detection in Multidimensional Datasets) is proposed. Firstly, on the basis of ZH-tree, the concept of micro-cluster is introduced. Each leaf node is regarded as a micro-cluster, and the micro-cluster is calculated to achieve the purpose of batch filtering. In order to obtain n sets of approximate outliers quickly, a greedy method is used to calculate the boundary of LOF and mark the minimum value as LOFmin. Secondly, the outliers can filtered out by LOFmin, the real outliers are calculated, and then the result set is updated to make the boundary closer. Finally, the accuracy and efficiency of DODMD algorithm are verified on real dataset and synthetic dataset respectively.
블록 기반의 손실 영상 압축 방식에서는 블록마다 다른 양자화 오류로 인하여 블록 경계를 따라 불연속성이 나타날 수 있다. 이러한 블록화 현상은 압축률이 높아질수록 심각하여 화질에 큰 영향을 미친다. 이러한 블록화 현상을 막기 위해 많은 알고리즘들이 제안되었다 그러나 블록화 현상에 대한 연구 중 모서리 잡음이라고 불리는 현상에 대한 연구가 미진하였다. 모서리 잡음은 블록 경계가 교차하는 지점에서 영상 경계가 불연속적으로 나타나게 되는 것을 말한다. 본 논문에서는 블록 기반영상 압축방식에서 발생하는 모서리 잡음의 발생과정과 특성을 분석하고 이 문제를 해결하기 위한 검출과 제거 알고리즘을 제안한다. 실험 결과는 제안 방법이 주관적 화질을 향상시키는 것을 보여준다.
본 연구에서는 교통정보시스템에서 통행시간의 이상치 자료를 제거하기 위한 복합 필터링 모형을 제시하였으며, 이는 중위절대편차법과 Voting Rule을 기반으로 하는 이중화된 필터링 모형에 해당한다. 본 모형은 중위절대편차법을 이용해 표본을 정규분포화 시키기 위한 1차 필터링을 수행하며, 이후 Voting Rule을 이용해 중위절대편차법의 적용 이후에도 남아 있는 이상치 자료를 제거하는 방식에 해당한다. 이때 Voting Rule은 표본의 통행시간과 평균통행시간의 차이가 임계치를 초과하는 경우 해당 표본을 이상치로 판정하며, 다수결의 원칙을 이용하여 이상치 자료의 비율에 따라 이상치에 대한 제거 여부를 결정한다. 일반국도 3호선의 경기도 광주시 구간을 대상으로 한 사례분석을 통해 복합 필터링 모형이 이상치 표본 만을 선택적으로 제거하여 통행시간 추정의 정확도 개선에 기여할 수 있음을 확인하였다.
시계열 자료에서의 특이치, 특히 이 가운데 가법적 특이치가 모형의 식별, 모수의 추정 및 예측과 관련된 분석 전과정을 왜곡하는 것은 잘 알려져 있다. 그러나 특이치가 다수 발생하는 경우, 특히 연속적으로 집단을 이루어 발생할 때 대부분 특이치 검출방법은 가면화효과와 수렁화효과때문에 이들을 정확히 판별하지 못한다. 본 논문에서는 p차 자기상관회귀모형에 대한 고붕괴점 회귀추정량을 이용한 양방향 로버스트 필터방법을 제안했다. 실제 사례와 모의실험을 통해 제안한 방법이 매우 정확하게 시계열 자료에 포함된 특이치들을 검출하고 있음을 확인할 수 있다.
현장에서 수집되는 교통원시자료는 수집장비의 결함 및 주변환경 등에 의해 다양한 이상치가 발생한다. 원시자료의 품질은 추가 가공을 통해 생성되는 교통정보의 신뢰도에 직접적인 영향을 미치는 중요한 요인이다. 실시간으로 수집되는 교통원시자료를 1차 가공하는데 있어서 핵심은 이상치(Outlier)를 검지하고 보정하는 것이라고 할 수 있다. 본 연구에서는 GPS장비를 이용해 얻은 개별차량의 주행속도에서 발생하는 이상치를 제거하고 보정하는 기법을 제안하였다. GPS는 광범위한 교통네트워크상의 차량추적에 용이하게 사용될 수 있는 장점이 있다. 수집된 개별차량의 주행속도에서 이상치를 검지하고 보정하기 위해 국소가중다항회귀분석(LWR: Locally Weighted Regression)을 적용하였다. 또한 국소가중다항회귀분석을 수행하기 위한 파라미터 결정 알고리즘을 개발하여 적용하였다. 개발된 필터링 기법의 성능 평가를 위해 Synthetic Outlier를 생성 및 주입하여 개발된 필터링 기법을 통해 보정시키고 원시자료와 비교 분석 하였고, LWR을 이용한 기법의 상대적 성능 평가를 위해 지수평활화를 이용한 기법과 비교하였다. 평가 결과 LWR기법이 지수평활화를 이용한 기법보다 낮은 오차율을 보여 상대적으로 우수함을 검증하였다. 본 연구에서 제안한 방법론은 교통정보공학 분야의 자료처리 및 정보가공을 위한 도구로서 활용도가 클 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.