• Title/Summary/Keyword: outer frame

Search Result 136, Processing Time 0.02 seconds

A Developmental Study on the Wood-frame House Construction Method in Hilly Areas (구릉지형 목조주택의 시공기법 개발)

  • Choi, Jang-Soon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.4 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • This study aims at the development on the wood-frame house construction method in hilly areas. To obey the trend of public opinion to prohibit the troublesome development on a large scale in preparing housing sites, the small housing site development in hilly areas is on the rise and consequently wood-frame house which harmonized natural topography, geographical feature and environment in hilly areas is needed. The main contents are how to make housing sites, how to make roads, how to make pedestrian ways and surroundings of water to run downhill, how to locate house, how to make between road and house, how to view inner and outer and how to make retaining wall on the wood-frame house construction method in hilly areas.

  • PDF

Development of an Assumed Strain Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 가정된 변형률 쉘 요소 개발)

  • Kim, Ki-Du;Song, Sak Suthasupradit;Hwang, Hyun-Jin;Park, Jae-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.108-117
    • /
    • 2010
  • The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, the different jacking forces are required in the inner and outer webs. And it is impossible to calculate different jacking forces in the inner and outer webs if we use the frame element for construction stage analysis. In order to overcome this problem, the use of shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of an assumed strain shell element and its application of PSC box girder bridge analysis are presented.

The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMTT (LMTT용 셔틀 카의 프레임 강도 및 강성에 미치는 크로스 빔의 영향)

  • Lim J. H.;Han G. J.;Lee K. S.;Han D. S.;Shim J. J.;Lee S. W.;Jeon Y. H.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.77-82
    • /
    • 2005
  • According as the quantity of goods transported by ship is increasing, a port environment is rapidly changing To meet this situation successfully, the development of the next generation port loading and unloading system(LMTT) is studied A Frame of shuttle car for LMTT(Linear Motor-based Transfer Technology) consists of three parts which are outer beam, inner beam and cross beam In this study, we carried out the finite element analysis for the effect of cross beam on the strength and stiffness of the frame according to the number of cross beam, loading position of container, the distance ratio of inner beam from center. The result is as follow ; When the load is applied on outer beam and inner beam concurrently and the number of cross beam is 5, that is the optimum condition in frame design.

Thermal Resistance and Condensation in the Light-frame Timber Wall Structures with Various Composition of Insulation Layers

  • Jang, Sang Sik;Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2019
  • As energy costs increase, more people has become interested on energy efficiency and savings in residential buildings. The two main subjects related to energy in residential buildings are insulation and condensation. There are two approaches to prevent condensation; increasing air tightness and maintaining the temperature inside of the wall structure over the dew point, which is in turn related to insulation. Even though the Korean government has highlighted the importance of energy efficiency for residential housings, and in spite of the customers' demands, the timber construction industry is still using conventional light-frame construction without even trying to improve energy efficiency. In this study, various types and combinations of wall structures were tested under cold outdoor and warm indoor temperatures to analyse the temperature gradients and to determine the possible sites of condensation in the wall structures. In addition to the experimental tests, three theoretical models were developed and their estimations of temperature change through the wall structure were compared with the actual measurements to evaluate accuracy of the models. The results of the three models agree relatively well with the experimental values, indicating that they can be used to estimate temperature changes in wall structures. The theoretical analysis of different insulation layers' combinations show that condensation may occur within the mid-layer in the conventional light-frame wall structures for any combination of inner-, mid-, and outer-layers of insulation. Therefore, it can be concluded that the addition of an inner and outer insulation layer or increasing the thickness of insulation may not be adequate to prevent condensation in the wall structure without preventing penetration of warm moist air into the wall structure.

Optimum Parameter and Performance Analysis of Outer Loop Power Control in IMT-2000 (IMT-2000 외부회로 전력제어의 최적변수 및 성능 분석)

  • 이재성;장영민;전기준;임순용
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.121-124
    • /
    • 2000
  • In IMT-2000 systems, the outer loop dynamically adjusts the target SIR so that adequate performance in terms of the frame error rate(FER) and the true quality measure is achieved. This paper utilizes an analytic model lot outer loop power control(OLPC) adjusting the target SIR in IMT-2000. The analytic model is based on the discrete-time Markov chain as voice traffic SIR. It is described that the model can be used to find the optimum step size in voice traffic for fast fading environments. The optimum step size influences the performance of OLPC: As the step size decreases, the average target SIR increases and average FER decreases.

  • PDF

Analysis of Vibration Characteristics of Modular Unit by Road Test (도로 주행 시험을 통한 모듈러 유닛의 진동 특성 분석)

  • Kwak, Myong Keun;Back, Jung Hoon;Seol, Wook Je
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The unit modular system is a type of prefabricated construction method that completes the building by uniting the modular units on site by transporting the unit module structure manufactured in the factory to the site. Since the unit module structure is not only the frame but also the finished form including the inner and outer materials, it is most likely to be brought into the field. Therefore, not only the damage of the inner and outer materials but also deformation of frame structure due to the vibration generated during the transportation of the vehicle, And it is necessary to take appropriate methods when transporting the module structure. However, there are no methods to prevent modular structure damage due to vehicle vibration in domestic and foreign modular transportation guidelines or standards. In this study, we investigate the vibrations during the vehicle transportation of the module structure through the road driving test, identify the vibration frequency characteristics of the vehicle through FFT analysis, and propose a vibration reduction methods for module transportation.

Analytical Study on the Effect of Forming Process on Springback of an Automobile Rear Frame (성형법에 따른 자동차 리어 프레임의 스프링백 해석대비)

  • Song Y. J.;Jung H. S.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.63-67
    • /
    • 2001
  • Springback after drawing and trimming is regarded as one of the most influential factors during forming structural frames since the part dimensions have dominant effect on assembly quality at later stages. In this study, analytical results were obtained from a commercial FEM package for an outer rear frame of an automobile. In terms of springback and twist the effect of forming process is compared and discussed between open and closed-ends forming

  • PDF

The Prediction of Defection for the Shape Fixability on the Stamped Lead Frame (반도체 리드프레임의 형상 동결성에 관한 연구)

  • Cho H. K.;Kim D. H.;Lee S. B.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.77-80
    • /
    • 2001
  • IC lead frame needs the precision shape for good efficiency. In the blanking process, there are many parameter effected the dimensional accuracy : lead width, blanking order, striper force, tool clearance etc. In this research, the4 undesirable defects appeared in the final blanking process. so we measured the deflection of lead according to the stripper force using $PAM-STAMP_{TM}$. In the result, the deflection was decreased by increasing the stripper force properly. and we changed the blanking order on the test model. In the blanking order, deflection is good from the outer line position blanking to center line position. so we can design the precision die without tryout by the prediction of the lead deflection.

  • PDF

Ellipsoidal bounds for static response of framed structures against interactive uncertainties

  • Kanno, Yoshihiro;Takewaki, Izuru
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • This paper presents an optimization-based method for computing a minimal bounding ellipsoid that contains the set of static responses of an uncertain braced frame. Based on a non-stochastic modeling of uncertainty, we assume that the parameters both of brace stiffnesses and external forces are uncertain but bounded. A brace member represents the sum of the stiffness of the actual brace and the contributions of some non-structural elements, and hence we assume that the axial stiffness of each brace is uncertain. By using the $\mathcal{S}$-lemma, we formulate a semidefinite programming (SDP) problem which provides an outer approximation of the minimal bounding ellipsoid. The minimum bounding ellipsoids are computed for a braced frame under several uncertain circumstances.

Investigation of natural frequencies of multi-bay and multi-storey frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • This study concerns about calculating exact natural frequencies of frames using a single variable shear deformation theory (SVSDT) which considers the parabolic shear stress distribution across the cross section. Free vibration analyses are performed for multi-bay, multi-storey and multi-bay multi-storey type frame structures. Dynamic stiffness formulations are derived and used to obtain first five natural frequencies of frames. Different beam and column cross sections are considered to reveal their effects on free vibration analysis. The calculated natural frequencies are tabulated with the results obtained using Euler-Bernoulli Beam Theory (EBT) and Timoshenko Beam Theory (TBT). Moreover, the effects of inner and outer columns on natural frequencies are compared for multi-bay frames. Several mode shapes are plotted.