• Title/Summary/Keyword: oscillation

Search Result 2,652, Processing Time 0.029 seconds

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Analysis of Slip Displacement and Wear in Oscillating Tube supported by Plate Springs (튜브진동 시 판스프링 지지부의 미끄럼변위와 마멸 분석)

  • Kim Hyung-Kyu;Lee Young-Ho;Song Ju-Sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.41-49
    • /
    • 2003
  • Tube oscillation behaviour is experimentally investigated for the study on the fuel rod fretting that is caused by the flow-induced vibration in nuclear reactor. The experiment was conducted in all at room temperature. The specimen of tube assembly was supported by plate springs which simulated the spacer grids and fuel rods of a fuel assembly. To investigate the influence of contact condition between the grids and rods, normal load of 10 and 5 N, gaps of 0.1 and 0.3 mm were applied. The range of the oscillation at the center of the fuel rod specimen was varied as 0.2, 0.3 and 0.4 mm to simulate the fuel rod vibration due to flow. Displacements near the contact were measured with four displacement sensors during the tube oscillation. As results, the shape of oscillation (phase) varied depending on the contact condition. The oscillation displacement increased considerably from the contact to gap condition. The displacement increased further as the gap size increased. It is regarded that the spring shape influences the tube oscillation behaviour. Simple calculation showed that the slip displacement was very small. Therefore, cumulative damage concept is necessary for the fuel rod wear. The mechanism of plowing is thought required to explain the severe wear in the case of gap existence.

  • PDF

Experimental Installation of Pressure Oscillation based on Pulse-driving Technique

  • YANG, Tian-hao;LIU, Pei-jin;JIN, Bing-ning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.58-61
    • /
    • 2015
  • Under the background of combustion instability in solid rocket motor, to study the relationship between pressure oscillations and dynamic process of propellant flames, it is necessary to simulate an oscillation environment with certain frequency, amplitude and duration. This paper presents an experimental installation of pressure oscillation based on pulse-driving technique, with which pressure oscillations features under different pulse-driving conditions were compared and analyzed. For the pulse-driver applied in this paper, a pressure oscillation with 0.15s-0.5s duration, 179Hz-210Hz first order frequency, 0.04MPa-0.35MPa amplitude is simulated. The test results show that an oscillation with higher frequency and lager amplitude can be obtained when pulse-driver is installed on the top of the installation cavity, while on the side, an oscillation with a longer duration and approximate cavity natural frequency can be simulated.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

OSCILLATION AND ATTRACTIVITY OF DISCRETE NONLINEAR DELAY POPULATION MODEL

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.363-374
    • /
    • 2007
  • In this paper, we consider the discrete nonlinear delay model which describe the control of a single population of cells. We establish a sufficient condition for oscillation of all positive solutions about the positive equilibrium point and give a sufficient condition for the global attractivity of the equilibrium point. The oscillation condition guarantees the prevalence of the population about the positive steady sate and the global attractivity condition guarantees the nonexistence of dynamical diseases on the population.

Virtual ground monitoring for high fault coverage of linear analog circuits

  • Roh, Jeongjin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • This paper explains a technique to improve the fault coverage of oscillation-test [1-5] for linear analog circuits. The transient behavior of the virtual ground is monitored during oscillation to extract information of the circuit. The limitation of the oscillation-test is analyzed, and an efficient signature analysis technique is proposed to maximize the fault coverage. The experimental result proves that the parametric fault coverage can be significantly increased by the proposed technique.

INTERVAL OSCILLATION CRITERIA FOR A SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

  • Zhang, Cun-Hua
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1165-1176
    • /
    • 2009
  • This paper is concerned with the interval oscillation of the second order nonlinear ordinary differential equation (r(t)|y'(t)|$^{{\alpha}-1}$ y'(t))'+p(t)|y'(t)|$^{{\alpha}-1}$ y'(t)+q(t)f(y(t))g(y'(t))=0. By constructing ageneralized Riccati transformation and using the method of averaging techniques, we establish some interval oscillation criteria when f(y) is not differetiable but satisfies the condition $\frac{f(y)}{|y|^{{\alpha}-1}y}$ ${\geq}{\mu}_0$ > 0 for $y{\neq}0$.

  • PDF

Measurement Accuracy of Oscillation-Based Test of Analog-to-Digital Converters

  • Mrak, Peter;Biasizzo, Anton;Novak, Franc
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.154-156
    • /
    • 2010
  • Oscillation-based testing of analog-to-digital converters represents a viable option for low-cost built-in self-testing in mixed-signal design. While numerous papers have addressed implementation issues, little attention has been paid to the measurement accuracy. In this letter, we highlight an inherent measurement uncertainty which has to be considered when deriving the parameters from the oscillation frequency.

A Frequency Analysis of Subspan Oscillation on Overhead Transmission Lines (가공송전선로의 서브스판 진동에 대한 주파수 특성 분석)

  • Sohn, Hong-Kwan;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.519-521
    • /
    • 2003
  • This paper presents a frequency analysis of subspan oscillation on overhead transmission line. The Oscillation frequency is a natural characteristic of a subspan and can be calculated. But it is not same to calculated frequency, because it has been composed several frequencies of adjacent subspan. We were analyzed to the frequency of subspan oscillation by FFT methods. This result will use to establish of the subspan location rules.

  • PDF