• 제목/요약/키워드: oscillating

검색결과 955건 처리시간 0.025초

OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS WITH SEVERAL OSCILLATING COEFFICIENTS

  • Bohner, Martin;Chatzarakis, George E.;Stavroulakis, Ioannis P.
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.159-172
    • /
    • 2015
  • This paper presents a new sufficient condition for the oscillation of all solutions of difference equations with several deviating arguments and oscillating coefficients. Corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.

축방향 왕복운동을 하는 외팔보의 동적 안정성 해석 (Dynamic stability analysis of axially oscillating cantilever beams)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.469-474
    • /
    • 1996
  • Dynamic stability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived and transformed into non-dimensional ones. The equations include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the equations, the multiple scale perturbation method is employed to obtain a stability diagram. The stability diagram shows that relatively large unstable regions exist around the frequencies of the first bending natural frequency, twice the first bending natural frequency, and twice the second bending natural frequency. The validity of the diagram is proved by direct numerical simulations of the dynamic system.

  • PDF

면내 방향 맥동 운동하는 외팔평판의 동적 안정성 해석 (Dynamic Analysis of Cantilever Plates Undergoing Translationally Oscillating Motion)

  • 현상학;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.366-371
    • /
    • 2001
  • Dynamic stability of an oscillating cantilever plate is investigated in this paper. The equations of motion include harmonically oscillating parameters which originate from the motion-induced stiffness variation. Using the multiple scale perturbation method is employed to obtain a stability diagram. The tability diagram shows that relatively large unstable regions exist when the frequency of oscillation is near twice the frequencies of the 1st torsion natural mode and the 1st chordwide bending mode.

  • PDF

PORE WATER PRESSURE IN SAND BED UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.57-69
    • /
    • 2003
  • In this paper the theoretical method to analyse the pore water pressures in the bed under the oscillating water pressure is developed. In the former researches the validity of the theoretical treatment for the one-dimensional problem has been verified. However, the one-dimensional treatment is not sufficient to obtain the precise information concerning the many practical problems. From this point of view, in this study, we derive the fundamental equations for the general three-dimensional sand layer under the oscillating water pressure. The validity of this theoretical method is verified by experiments for the two-dimensional problems.

  • PDF

Dynamic Behavior of Sand Bed under Oscillating Water Pressure

  • HoWoongShon
    • 지구물리
    • /
    • 제6권2호
    • /
    • pp.49-56
    • /
    • 2003
  • Under the attack of storm waves, there are many destructions of coastal structures in the forms of sinking and sliding. There types of destructions will be in close relation to the dynamic behavior of sand bed around the structures. Form this point of view, in this pear, we investigate the characteristics of the pore water pressure and effective stresses in the highly saturated sand bed under oscillating water pressure theoretically. The results indicate that the oscillating water pressure induce the notable drop of strength of and bed around the structure under certain condition.

  • PDF

Design Rules of Hybrid Stepping Machine for Free Piston Engine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1219-1226
    • /
    • 2017
  • This paper presents the hybrid stepping machine for linear oscillating generators. The focus of the work is the suggestion of the improved model through the comparison of proposed models ; new flux concentrating PMs mover of the hybrid stepping generator is proposed based on the symmetrical and non-symmetrical stator cores of the surface mounted PMs mover, and non-slanted PMs and slanted PMs of the flux concentrating PMs mover. It is achieved using equivalent magnetic circuit considering leakage elements. Finally, this study suggests new hybrid stepping structure of linear oscillating generator.

진동하는 익형 주위의 유동장 해석을 위한 SST 난류 모델의 수정 (Modification of SST Turbulence Model for Computation of Oscillating Airfoil Flows)

  • 이보성;이상산;이동호
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.44-51
    • /
    • 1999
  • A modified version of SST turbulence model is suggested to simulate unsteady separated flows over oscillating airfoils. The original SST model, which shows good performance in predicting various steady flows, often results in oscillatory behavior of aerodynamic loads in large separated flow regions. It is shown that this oscillatory behavior is due to the adoption of the absolute value of vorticity in generalizing the original model. As a remedy, a modification is made such that the vorticity in the original SST model is replaced by strain rate. The present model is verified for a mild separated airfoil flow at fixed angle of incidence and for unsteady flowfields about oscillating airfoils. The results are compared with BSL model and original SST model. It is illustrated that the present model gives a better agreement with the experimental results than other two models.

  • PDF

축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • 김나은;현상학;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제13권3호
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성 (Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion)

  • 김나은;현상학;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.262-267
    • /
    • 2002
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of a axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

  • PDF