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OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS

WITH SEVERAL OSCILLATING COEFFICIENTS

Martin Bohner, George E. Chatzarakis, and Ioannis P. Stavroulakis

Abstract. This paper presents a new sufficient condition for the oscil-
lation of all solutions of difference equations with several deviating argu-
ments and oscillating coefficients. Corresponding difference equations of
both retarded and advanced type are studied. Examples illustrating the
results are also given.

1. Introduction

Let m ∈ N. Consider the retarded (delayed) difference equation of the form

(ER) ∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) = 0, n ∈ N0,

where, for all i ∈ {1, . . . ,m}, pi : N0 → R, τi : N0 → Z such that

(1.1) τi(n) ≤ n− 1, n ∈ N0 and lim
n→∞

τi(n) = ∞

and the (dual) advanced difference equation of the form

(EA) ∇x(n) −
m
∑

i=1

pi(n)x(σi(n)) = 0, n ∈ N,

where, for all i ∈ {1, . . . ,m}, pi : N → R, σi : N → N such that

(1.2) σi(n) ≥ n+ 1, n ∈ N, 1 ≤ i ≤ m.

Here, as usual, ∆ denotes the forward difference operator and ∇ denotes the
backward difference operator defined by

∆x(n) = x(n+ 1)− x(n) and ∇x(n) = x(n)− x(n− 1), n ∈ Z.
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Strong interest in (ER) is motivated by the fact that it represents a discrete
analogue of the differential equation (see [4] and the references cited therein)

(1.3) x′(t) +
m
∑

i=1

pi(t)x(τi(t)) = 0, t ≥ 0,

where, for all i ∈ {1, . . . ,m}, pi : [0,∞) → R is oscillating and continuous and
τi : [0,∞) → R is continuous such that

(1.4) τi(t) ≤ t, t ≥ 0 and lim
t→∞

τi(t) = ∞,

while (EA) represents a discrete analogue of the advanced differential equation
(see [4] and the references cited therein)

(1.5) x′(t)−
m
∑

i=1

pi(t)x(σi(t)) = 0, t ≥ 1,

where, for all i ∈ {1, . . . ,m}, pi : [1,∞) → R is oscillating and continuous and
σi : [1,∞) → R is continuous such that

(1.6) σi(t) ≥ t, t ≥ 1.

By a solution of (ER) we mean a sequence of real numbers {x(n)}n≥−w

which satisfies (ER) for all n ∈ N0. Here,

w = − min
n∈N0

1≤i≤m

τi(n).

It is clear that, for each choice of real numbers c−w, c−w+1, . . ., c−1, c0, there
exists a unique solution {x(n)}n≥−w of (ER) which satisfies the initial condi-

tions x(−w) = c−w, x(−w + 1) = c−w+1, . . ., x(−1) = c−1, x(0) = c0. By a
solution of the advanced difference equation (EA) we mean a sequence of real
numbers {x(n)}n∈N0

which satisfies (EA) for all n ∈ N.

A solution {x(n)}n≥−w (or {x(n)}n∈N0
) of (ER) (or (EA)) is called oscil-

latory if the terms x(n) of the sequence are neither eventually positive nor
eventually negative. Otherwise, the solution is said to be nonoscillatory. In
the last few decades, oscillatory behavior of all solutions of difference equa-
tions has been extensively studied when the coefficients pi(n) are nonnegative.
However, for the general case when pi(n) are allowed to oscillate, it is difficult
to study oscillation of (ER) and (EA). Therefore, the results on oscillation of
difference and differential equations with oscillating coefficients are relatively
scarce. Thus, only a small number of papers is dealing with this case. See,
for example, [2, 3, 7–9, 11–16] and the references cited therein. For the general
theory of difference equations, the reader is referred to the monographs [1,6,10].

For (1.3) with pi(t) ≥ 0 for all i ∈ {1, . . . ,m}, Grammatikopoulos, Ko-
platadze and Stavroulakis [5] established the following theorem.
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Theorem 1.1 (See [5, Theorems 2.5 and 2.6]). Assume that τi are increasing

for all i ∈ {1, . . . ,m},
∫ ∞

0

|pi(s)− pj(s)|ds < ∞, 1 ≤ i, j ≤ m

and

lim inf
t→∞

∫ t

τi(t)

pi(s)ds = βi, 1 ≤ i ≤ m.

If, moreover

min

{

m
∑

i=1

eβiλ

λ
: λ ∈ (0,∞)

}

> 1 or

m
∑

i=1

βi >
1

e
,

then all solutions of (1.3) oscillate.

For (1.3) and (1.5) with pi(t) ≥ 0 for all i ∈ {1, . . . ,m}, Fukagai and Kusano
[4] established the following theorems.

Theorem 1.2 (See [4, Theorem 1′ (i)]). Assume (1.4) and that there exists a

continuous nondecreasing τ̃ such that τi(t) ≤ τ̃ (t) ≤ t for t ≥ 0, 1 ≤ i ≤ m. If

lim inf
t→∞

∫ t

τ̃(t)

m
∑

i=1

pi(s)ds >
1

e
,

then all solutions of (1.3) oscillate.

Theorem 1.3 (See [4, Theorem 1′ (ii)]). Assume (1.6) and that there exists a

continuous nondecreasing σ̃ such that t ≤ σ̃(t) ≤ σi(t) for t ≥ 0, 1 ≤ i ≤ m. If

lim inf
t→∞

∫ σ̃(t)

t

m
∑

i=1

pi(s)ds >
1

e
,

then all solutions of (1.5) oscillate.

In the same paper [4], the authors also studied the oscillating coefficients
case and established the following theorems.

Theorem 1.4 (See [4, Theorem 3′ (i)]). Assume (1.4) and that there exists a

continuous nondecreasing τ̃ such that τi(t) ≤ τ̃ (t) ≤ t for t ≥ 0, 1 ≤ i ≤ m.

Suppose moreover that there exists {t(n)}n∈N
such that limn→∞ t(n) = ∞,

[τ̃n(t(n)), t(n)] are disjoint for all n ∈ N,

and

pi(t) ≥ 0 for all t ∈
⋃

n∈N

[τ̃n(t(n)), t(n)] , 1 ≤ i ≤ m.

If there exists a constant c such that
∫ t

τ̃(t)

m
∑

i=1

pi(s)ds > c >
1

e
for all t ∈

⋃

n∈N

[

τ̃n−1(t(n)), t(n)
]

,

then all solutions of (1.3) oscillate.
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Theorem 1.5 (See [4, Theorem 3′ (ii)]). Assume (1.6) and that there exists a

continuous nondecreasing σ̃ such that t ≤ σ̃(t) ≤ σi(t) for t ≥ 0, 1 ≤ i ≤ m.

Suppose moreover that there exists {t(n)}n∈N
such that limn→∞ t(n) = ∞,

[t(n), σ̃n(t(n))] are disjoint for all n ∈ N,

and

pi(t) ≥ 0 for all t ∈
⋃

n∈N

[t(n), σ̃n(t(n))] , 1 ≤ i ≤ m.

If there exists a constant c such that

∫ σ̃(t)

t

m
∑

i=1

pi(s)ds > c >
1

e
for all t ∈

⋃

n∈N

[

t(n), σ̃n−1(t(n))
]

,

then all solutions of (1.5) oscillate.

For (ER) and (EA) with pi(n) ≥ 0 for all i ∈ {1, . . . ,m}, Chatzarakis, Pinelas
and Stavroulakis [3] established the following results.

Theorem 1.6 (See [3, Theorems 2.1 and 2.2]). Assume (1.1) and that τi is

increasing for all i ∈ {1, . . . ,m}. If

lim sup
n→∞

m
∑

i=1

n
∑

j=τ(n)

pi(j) > 1,

where τ(n) = max1≤i≤m τi(n), n ∈ N0, or

(1.7) lim sup
n→∞

m
∑

i=1

pi(n) > 0 and lim inf
n→∞

m
∑

i=1

n−1
∑

j=τi(n)

pi(j) >
1

e
,

then all solutions of (ER) oscillate.

Theorem 1.7 (See [3, Theorems 3.1 and 3.2]). Assume (1.2) and that σi is

increasing for all i ∈ {1, . . . ,m}. If

lim sup
n→∞

m
∑

i=1

σ(n)
∑

j=n

pi(j) > 1,

where σ(n) = min1≤i≤m σi(n), n ∈ N, or

(1.8) lim sup
n→∞

m
∑

i=1

pi(n) > 0 and lim inf
n→∞

m
∑

i=1

σi(n)
∑

j=n+1

pi(j) >
1

e
,

then all solutions of (EA) oscillate.

For equations (ER) and (EA) with oscillating coefficients, very recently,
Bohner, Chatzarakis and Stavroulakis [2] established the following results.
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Theorem 1.8 (See [2, Theorem 2.4]). Assume (1.1) and that, for all i ∈
{1, . . . ,m}, τi is increasing and there exists ni : N → N such that limj→∞ ni(j)
= ∞ and

(1.9)

pk(n) ≥ 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[τ(τ(ni(j))), ni(j)] ∩ N







6= ∅, 1 ≤ k ≤ m,

where

(1.10) τ(n) = max
1≤i≤m

τi(n), n ∈ N0.

If, moreover

(1.11) lim sup
j→∞

m
∑

i=1

n(j)
∑

q=τ(n(j))

pi(q) > 1,

where n(j) = min {ni(j) : 1 ≤ i ≤ m}, then all solutions of (ER) oscillate.

Theorem 1.9 (See [2, Theorem 3.4]). Assume (1.2) and that, for all i ∈
{1, . . . ,m}, σi is increasing and there exists ni : N → N such that limj→∞ ni(j)
= ∞ and

(1.12)

pk(n) ≥ 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[ni(j), σ(σ(ni(j)))] ∩ N







6= ∅, 1 ≤ k ≤ m,

where

(1.13) σ(n) = min
1≤i≤m

σi(n), n ∈ N.

If, moreover

(1.14) lim sup
j→∞

m
∑

i=1

σ(n(j))
∑

q=n(j)

pi(q) > 1,

where n(j) = max {ni(j) : 1 ≤ i ≤ m}, then all solutions of (EA) oscillate.

An interesting question then arises whether there exist the analogues of (1.7)
and (1.8) for (ER) and (EA) in the case of oscillating coefficients. In the present
paper, optimal conditions for the oscillation of all solutions of (ER) and (EA)
are established and a positive answer to the above question is given. Examples
illustrating the main results are also given.

2. Retarded equations

In this section, we present a new sufficient condition for the oscillation of all
solutions of (ER) under the assumption that the sequences τi are increasing for
all i ∈ {1, . . . ,m}.
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Theorem 2.1. Assume (1.1) and that, for all i ∈ {1, . . . ,m}, τi is increasing

and there exists ni : N → N with limj→∞ ni(j) = ∞,

(2.1)

pk(n) ≥ 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[τi(τi(ni(j))), ni(j)] ∩N







6= ∅, 1 ≤ k ≤ m,

and

(2.2) lim sup
n→∞

m
∑

i=1

pi(n) > 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[τi(τi(ni(j))), ni(j)] ∩ N







.

If, moreover

(2.3) lim inf
j→∞

m
∑

i=1

ni(j)−1
∑

q=τi(ni(j))

pi(q) >
1

e
,

then all solutions of (ER) oscillate.

Proof. Assume, for the sake of contradiction, that {x(n)}n≥−w is an eventually

positive solution of (ER). Then, in view of (2.1), it is clear that there exists
j0 ∈ N such that

pk(n) ≥ 0 for all n ∈
m
⋂

i=1

[τi(τi(ni(j0))), ni(j0)] ∩ N, 1 ≤ k ≤ m,(2.4)

x(τk(n)) > 0 for all n ∈
m
⋂

i=1

[τi(τi(ni(j0))), ni(j0)] ∩ N, 1 ≤ k ≤ m,(2.5)

and

m
∑

i=1

ni(j0)−1
∑

q=τi(ni(j0))

pi(q) >
1

e
+ ε0(2.6)

for some ε0 > 0. In view of (2.4) and (2.5), (ER) gives

x(n+ 1)− x(n) = −
m
∑

i=1

pi(n)x(τi(n)) ≤ 0

for all n ∈ ⋂m
i=1 [τi(τi(ni(j0))), ni(j0)] ∩ N. This guarantees that the sequence

x is decreasing on
⋂m

i=1 [τi(τi(ni(j0))), ni(j0)] ∩ N. Set

(2.7) bi(ni(j0)) =

(

ni(j0)− τi(ni(j0))

ni(j0)− τi(ni(j0)) + 1

)ni(j0)−τi(ni(j0))+1

, 1 ≤ i ≤ m.

Clearly

(2.8)
1

4
≤ bi(ni(j0)) ≤

1

e
, 1 ≤ i ≤ m.
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Let

(2.9) d = 1 + eε0.

Combining (2.6), (2.8) and (2.9), we obtain

m
∑

i=1

ni(j0)−1
∑

q=τi(ni(j0))

pi(q)

bi(ni(j0))
≥

m
∑

i=1

ni(j0)−1
∑

q=τi(ni(j0))

pi(q)

1/e

= e

m
∑

i=1

ni(j0)−1
∑

q=τi(ni(j0))

pi(q) > e

(

1

e
+ ε0

)

= d > 1,

i.e.,

(2.10)

m
∑

i=1

ni(j0)−1
∑

q=τi(ni(j0))

pi(q)

bi(n(j0))
> d > 1.

Since {x(n)}n≥−w is decreasing on
⋂m

i=1 [τi(τi(ni(j0))), ni(j0)] ∩ N, clearly

(2.11)
x(τi(ni(j0)))

x(ni(j0))
≥ 1, 1 ≤ i ≤ m.

By (ER), we have

(2.12)
x(ni(j0) + 1)

x(ni(j0))
= 1−

m
∑

i=1

pi(ni(j0))
x(τi(ni(j0)))

x(ni(j0))
.

On the other hand,

x(ni(j0))

x(τi(ni(j0)))
=

ni(j0)−1
∏

λ=τi(ni(j0))

x(λ+ 1)

x(λ)

=

ni(j0)−1
∏

λ=τi(ni(j0))

(

1−
m
∑

i=1

pi(λ)
x(τi(λ))

x(λ)

)

≤
ni(j0)−1
∏

λ=τi(ni(j0))

(

1−
m
∑

i=1

pi(λ)

)

,

i.e.,

(2.13)
x(ni(j0))

x(τi(ni(j0)))
≤

ni(j0)−1
∏

λ=τi(ni(j0))

(

1−
m
∑

i=1

pi(λ)

)

.

By using (2.13) and the well-known arithmetic-geometric mean inequality, we
find

x(ni(j0))

x(τi(ni(j0)))
≤

ni(j0)−1
∏

λ=τi(ni(j0))

(

1−
m
∑

i=1

pi(λ)

)
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≤



1− 1

ni(j0)− τi(ni(j0))

m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)





ni(j0)−τi(ni(j0))

,

i.e.,

x(τi(ni(j0)))

x(ni(j0))
(2.14)

≥



1− 1

ni(j0)− τi(ni(j0))

m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)





−(ni(j0)−τi(ni(j0)))

.

In view of

y(1− y)ρ ≤ ρρ

(1 + ρ)1+ρ
for all y ∈ (0, 1) and ρ ∈ N,

inequality (2.14) gives

x(τi(ni(j0)))

x(ni(j0))
(2.15)

≥
m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)

(

ni(j0)− τi(ni(j0)) + 1

ni(j0)− τi(ni(j0))

)ni(j0)−τi(ni(j0))+1

.

Combining (2.15), (2.7) and (2.10), we obtain

(2.16)
x(τi(ni(j0)))

x(ni(j0))
≥

m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)

bi(ni(j0))
> d.

Similarly,

x(ni(j0))

x(τi(ni(j0)))
=

ni(j0)−1
∏

λ=τi(ni(j0))

x(λ + 1)

x(λ)

=

ni(j0)−1
∏

λ=τi(ni(j0))

(

1−
m
∑

i=1

pi(λ)
x(τi(λ))

x(λ)

)

≤
ni(j0)−1
∏

λ=τi(ni(j0))

(

1− d

m
∑

i=1

pi(λ)

)

≤



1− d

ni(j0)− τi(ni(j0))

m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)





ni(j0)−τi(ni(j0))

.

Therefore

x(τi(ni(j0)))

x(ni(j0))
≥ d

m
∑

i=1

ni(j0)−1
∑

λ=τi(ni(j0))

pi(λ)

bi(ni(j0))
> d2.
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Applying this procedure k times, we obtain

(2.17)
x(τi(ni(j0)))

x(ni(j0))
> dk.

On the other hand, since (2.2) holds, there exists a subsequence of integers
θ(ni(j0)) such that

lim
n→∞

m
∑

i=1

pi(θ(ni(j0))) ≥ c > 0.

By (2.12), we have

0 <
x(ni(j0) + 1)

x(ni(j0))
= 1−

m
∑

i=1

pi(ni(j0))
x(τi(ni(j0)))

x(ni(j0))
,

i.e.,

x(τ(ni(j0)))

x(ni(j0))

m
∑

i=1

pi(ni(j0)) < 1,

where τ is defined by (1.10). Thus

x(τ(θ(ni(j0))))

x(θ(ni(j0)))

m
∑

i=1

pi(θ(ni(j0))) < 1,

i.e.,

x(τ(θ(ni(j0))))

x(θ(ni(j0)))
<

1
∑m

i=1 pi(θ(ni(j0)))
≤ 1

c
< ∞,

i.e., lim infn→∞
x(τ(n(j0)))
x(n(j0))

exists. This contradicts (2.17). �

A slight modification in the proof of Theorem 2.1 leads to the following
result about retarded difference inequalities.

Theorem 2.2. Assume that all conditions of Theorem 2.1 hold. Then

(i) the difference inequality

∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) ≤ 0, n ∈ N0

has no eventually positive solutions;
(ii) the difference inequality

∆x(n) +

m
∑

i=1

pi(n)x(τi(n)) ≥ 0, n ∈ N0

has no eventually negative solutions.
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3. Advanced equations

Oscillation of all solutions of (EA) is described by the following result. Note
that the proof is an easy modification of the proof of Theorem 2.1 and hence
is omitted.

Theorem 3.1. Assume (1.2) and that, for all i ∈ {1, . . . ,m}, σi is increasing

and there exists ni : N → N with limj→∞ ni(j) = ∞,

(3.1)

pk(n) ≥ 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[ni(j), σi(σi(ni(j)))] ∩N







6= ∅, 1 ≤ k ≤ m,

and

(3.2)

lim sup
n→∞

m
∑

i=1

pi(n) > 0 for all n ∈
m
⋂

i=1







⋃

j∈N

[ni(j), σi(σi(ni(j)))] ∩ N







.

If, moreover

(3.3) lim inf
j→∞

m
∑

i=1

σi(ni(j))
∑

q=ni(j)+1

pi(q) >
1

e
,

then all solutions of (EA) oscillate.

A slight modification in the proof of Theorem 3.1 leads to the following
result about advanced difference inequalities.

Theorem 3.2. Assume that all conditions of Theorem 3.1 hold. Then

(i) the difference inequality

∇x(n)−
m
∑

i=1

pi(n)x(σi(n)) ≥ 0, n ∈ N

has no eventually positive solutions;
(ii) the difference inequality

∇x(n)−
m
∑

i=1

pi(n)x(σi(n)) ≤ 0, n ∈ N

has no eventually negative solutions.

4. Examples

The significance of the results is illustrated in the following examples. It is
also demonstrated that the oscillation conditions of Theorems 2.1 and 1.8 and
of Theorems 3.1 and 1.9 are independent.
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Example 4.1. Consider the retarded difference equation

(4.1) ∆x(n) + p1(n)x(n− 2) + p2(n)x(n − 3) = 0, n ∈ N0,

where

p1(n) =
1

2
(

2 +
√
3
) · cos nπ

6
and p2(n) =

1

2
(

2 +
√
3
) · sin nπ

6
, n ∈ N0.

Here, τ1(n) = n− 2 and τ2(n) = n− 3. Observe that for

n1(j) = 12j + 15, j ∈ N,

we have p1(n) ≥ 0 for all n ∈ A, where

A =
⋃

j∈N

[τ1(τ1(n1(j))), n1(j)] ∩ N =
⋃

j∈N

[12j + 11, 12j + 15] ∩N.

Also, for

n2(j) = 12j + 18, j ∈ N,

we have p2(n) ≥ 0 for all n ∈ B, where

B =
⋃

j∈N

[τ2(τ2(n2(j))), n2(j)] ∩ N =
⋃

j∈N

[12j + 12, 12j + 18] ∩ N.

Therefore

p1(n) ≥ 0 and p2(n) ≥ 0 for all n ∈ A∩B =
⋃

j∈N

[12j + 12, 12j + 15]∩N.

Now, for all n ∈ A ∩B, we have

lim sup
n→∞

2
∑

i=1

pi(n) =
1 +

√
3

4(2 +
√
3)

> 0

and

lim inf
j→∞

2
∑

i=1

ni(j)−1
∑

q=τi(ni(j))

pi(q) = lim inf
j→∞





12j+14
∑

q=12j+13

p1(q) +

12j+17
∑

q=12j+15

p2(q)





=
1

2
(

2 +
√
3
) ·
(

cos
π

6
+ cos

π

3

)

+
1

2
(

2 +
√
3
) ·
(

sin
π

2
+ sin

2π

3
+ sin

5π

6

)

=
1

2
(

2 +
√
3
) ·
(

2 +
√
3
)

=
1

2
>

1

e
,

i.e., (2.2) and (2.3) of Theorem 2.1 are satisfied, and therefore all solutions of
(4.1) oscillate.

On the other hand, by (1.10), it is obvious that τ(n) = n− 2. Also,

n(j) = min {ni(j) : 1 ≤ i ≤ 2} = 12j + 15, j ∈ N.
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Observe that p1(n) ≥ 0 for all n ∈ A′ = A and p2(n) ≥ 0 for all n ∈ B′, where

B′ =
⋃

j∈N

[τ(τ(n2(j))), n2(j)] ∩N =
⋃

j∈N

[12j + 14, 12j + 18] ∩ N.

Therefore

p1(n) ≥ 0 and p2(n) > 0 for all n ∈ A′∩B′ =
⋃

j∈N

[12j + 14, 12j + 15]∩N.

Now,

lim sup
j→∞

2
∑

i=1

n(j)
∑

q=τ(n(j))

pi(q) = lim sup
j→∞





12j+15
∑

q=12j+13

p1(q) +

12j+15
∑

q=12j+13

p2(q)





=
1

2
(

2 +
√
3
) ·
(

cos
π

6
+ cos

π

3
+ cos

π

2

)

+
1

2
(

2 +
√
3
) ·
(

sin
π

6
+ sin

π

3
+ sin

π

2

)

=
1

2
(

2 +
√
3
) ·
(

2 +
√
3
)

=
1

2
< 1,

i.e., (1.11) of Theorem 1.8 is not satisfied.

Example 4.2. Consider the advanced difference equation

(4.2) ∇x(n)− p1(n)x(n + 1)− p2(n)x(n+ 3) = 0, n ∈ N,

where

p1(n) =
1

5 +
√
3
· cos nπ

6
and p2(n) =

1

5 +
√
3
· sin nπ

6
, n ∈ N.

Here, σ1(n) = n+ 1 and σ2(n) = n+ 3. Observe that for

n1(j) = 12j + 11, j ∈ N,

we have p1(n) > 0 for all n ∈ A, where

A =
⋃

j∈N

[n1(j), σ1(σ1(n1(j)))] ∩ N =
⋃

j∈N

[12j + 11, 12j + 13] ∩N.

Also, for

n2(j) = 12j + 12, j ∈ N,

we have p2(n) ≥ 0 for all n ∈ B, where

B =
⋃

j∈N

[n2(j), σ2(σ2(n2(j)))] ∩ N =
⋃

j∈N

[12j + 12, 12j + 18] ∩ N.

Therefore

p1(n) > 0 and p2(n) ≥ 0 for all n ∈ A∩B =
⋃

j∈N

[12j + 12, 12j + 13]∩N.
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Now, for all n ∈ A ∩B, we have

lim sup
n→∞

2
∑

i=1

pi(n) =
1 +

√
3

2(5 +
√
3)

> 0

and

lim inf
j→∞

2
∑

i=1

σi(ni(j))
∑

q=ni(j)+1

pi(q)

= lim inf
j→∞





12j+12
∑

q=12j+12

p1(q) +

12j+15
∑

q=12j+13

p2(q)





=
1

5 +
√
3
·
(

cos 0 + sin
π

6
+ sin

π

3
+ sin

π

2

)

=
1

2
>

1

e
,

i.e., (3.2) and (3.3) of Theorem 3.1 are satisfied, and therefore all solutions of
(4.2) oscillate.

On the other hand, by (1.13), it is obvious that σ(n) = n+ 1. Also,

n(j) = max {ni(j) : 1 ≤ i ≤ 2} = 12j + 12, j ∈ N.

Observe that p1(n) > 0 for all n ∈ A′ = A and p2(n) ≥ 0 for all n ∈ B′, where

B′ =
⋃

j∈N

[n2(j), σ(σ(n2(j)))] ∩ N =
⋃

j∈N

[12j + 12, 12j + 14] ∩N.

Therefore

p1(n) > 0 and p2(n) ≥ 0 for all n ∈ A′∩B′ =
⋃

j∈N

[12j + 12, 12j + 13]∩N.

Now,

lim sup
j→∞

2
∑

i=1

σ(n(j))
∑

q=n(j)

pi(q) = lim sup
j→∞





12j+13
∑

q=12j+12

p1(q) +

12j+13
∑

q=12j+12

p2(q)





=
1

5 +
√
3
·
(

cos 0 + cos
π

6
+ sin 0 + sin

π

6

)

=
3 +

√
3

2(5 +
√
3)

≈ 0.3515 < 1,

i.e., (1.14) of Theorem 1.9 is not satisfied.
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