• Title/Summary/Keyword: orthotropic materials

Search Result 218, Processing Time 0.026 seconds

Energy Release Rates for a Dynamically Growing Crack in Orthotropic Materials (직교이방체에서 동적성장하는 균열에 대한 에너지해방률)

  • 주석재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1590-1596
    • /
    • 1995
  • The energy release rates for a dynamically growing crack in orthotropic materials are expressed explicitly in terms of dynamic stress intensity factors. The stress functions suitable for the problem are found and the evaluation of the J-integral for the theoretical singular crack tip fields yields energy release rates. The present results are simpler than the existing ones and can be reduced to the well known solutions in special cases. Examples of extracting stress intensity factors from the finite element solution using the present results are given for the dynamically growing crack problem of orthotropic materials.

Buckling Analysis of Simply Supported Isosceles Trapezoidal Orthotropic Plate Using Collocation and Finite Element Method (선점법과 유한요소법을 사용한 단순지지된 등변사다리꼴 직교이방성판의 좌굴해석)

  • 이병권;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.13-16
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of isosceles trapezoidal orthotropic plate. In this study, all edges of plate are assumed to be simply supported and the difference of the applied loads are assumed to be taken out by shear of constant intensity along the sloping sides. For the buckling analysis, collocation method is employed. Finite element analysis is also conducted and the results are compared with theoretical ones.

  • PDF

Elastic Local Buckling for Orthotropic Channel Section Compression Members with Edge Stiffeners (연단보강된 직교이방성 Channel 단면 압축재의 탄성국부좌굴)

  • 최원창;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.91-94
    • /
    • 2001
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic channel section compression members stiffened with unsymmetric stiffeners at its free edges. In the analysis, tile edge stiffener is modeled as a beam element or a plate element. The result of both cases is presented in graphical form so that the effects of edge stiffeners on the local buckling strength of edge stiffened channel section member can be found.

  • PDF

Analysis of Elastic Local Buckling of an Orthotropic Compression Member with Asymmetric Edge Stiffeners (비대칭연단보강재가 설치된 직교이방성 압축재의 탄성 국부좌굴해석)

  • 최원창;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic open section thin-walled compression members with asymmetric edge stiffeners. In the analysis, 3 different cases of the second moment of inertia are considered to find the asymmetric edge stiffener effect on the local buckling strength. The analytical study results are presented in the graphical form so that the edge stiffener effects on the local buckling strength can be easily found.

  • PDF

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (I) - Reinforced Concrete Slab Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(I) - 철근 콘크리트 슬래브교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.135-140
    • /
    • 2001
  • A post-tensioned reinforced concrete slab bridge is analyzed by specially orthotropic laminate theory. Symmetrically reinforced slab with tension and compression steel is considered for convenience of analysis. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of the rule of mixture. This bridge is under uniformly distributed vertical loads, and axial loads and end moments due to post-tensioning. In this paper, finite difference method is used for numerical analysis of this bridge. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used for design of new bridges, and maintenance and repair of old bridges.

  • PDF

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (II) - Steel Plate Girder Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(II) - 강 판형교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.141-146
    • /
    • 2001
  • A post-tensioned steel plate girder bridge with cross-beams is analyzed by specially orthotropic laminate theory. The cross-sections of both girders and cross-beams are WF types. The result is compared with that of the beam theory. This bridge with simple support is under uniformly distributed vertical load, and axial loads and moment due to post-tension. In this paper, finite difference method for numerical analysis of simple supported bridge is developed. Relatively exact solution is obtained even with small number of meshes. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used in design of new bridges, and maintenance and repair of old bridges.

  • PDF

Nonlinear Anisotropic Hardening Laws for Orthotropic Fiber-Reinforced Composites (직교이방 섬유강화 복합재료의 비선형 비등방 경화법칙)

  • 김대용;이명규;정관수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • In order to describe the Bauschinger and transient behavior of orthotropic fiber-reinforced composites, a combined isotropic-kinematic hardening law based on the non-linear kinematic hardening rule was considered here, in particular, based on the Chaboche type law. In this modified constitutive law, the anisotropic evolution of the back-stress was properly accounted for. Also, to represent the orthotropy of composite materials, Hill's 1948 quadratic yield function and the orthotropic elasticity constitutive equations were utilized. Furthermore, the numerical formulation to update the stresses was also developed based on the incremental deformation theory for the boundary value problems. Numerical examples confirmed that the new law based on the anisotropic evolution of the back-stress complies well with the constitutive behavior of highly anisotropic materials such as fiber-reinforced composites.

  • PDF

A Study on the Development of Reflection Type Photoelastic Experimental Hybrid Method for Orthotropic Materials (직교이방성체 반사형 광탄성 실험 하이브리드 법 개발에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Jeong-Hwan;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.228-233
    • /
    • 2008
  • The reflection type photoelastic experiment can be used more effectively than the transparent type photoelastic experiment in industrial fields. However, the reflection type photoelastic experiment for orthotropic material has not been studied. Therefore, the reflection type photoelastic experimental hybrid method for the fracture mechanics of orthotropic material was developed in this research. Comparing the results obtained from this method with those from the hybrid method for isotropic material about the same isotropic specimen, the validity of this method was verified. And then, the reflection type photoelastic experiment for orthotropic material was applied to the orthotropic plates with a central crack of the various inclined angle. Using this hybrid method for the orthotropic material, it is able to obtain stress intensity factors and separate stress components at the vicinity of the crack-tip in orthotropic plates from only the isochromatic fringe patterns of isotropic coating material.

  • PDF

Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Piezoelectric Materials (직교이방성 압전재료에서 전파 하는 모드 III 균열의 응력장과 변위장)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.701-708
    • /
    • 2010
  • The stress and displacement fields of a permeable propagating crack in orthotropic piezoelectric materials under anti-plane shear mechanical load and in-plane electric load are analyzed. The equations of motion for the propagating crack in piezoelectric materials are developed and the solution on the stress and the displacement fields through an asymptotic analysis was obtained. The influences of the piezoelectric constant and of the dielectric permittivity on the stress and displacement fields at the crack tip are explicitly clarified. Using the stress and displacement fields obtained in this study, the characteristics of stress and displacement at a propagating crack tip in piezoelectric materials are discussed.