• Title/Summary/Keyword: orthogonal polynomials

Search Result 104, Processing Time 0.02 seconds

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

DISCRETE SOBOLEV ORTHOGONAL POLYNOMIALS AND SECOND ORDER DIFFERENCE EQUATIONS

  • Jung, H.S.;Kwon, K.H.;Lee, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.381-402
    • /
    • 1999
  • Let {Rn($\chi$)}{{{{ { } atop {n=0} }}}} be a discrete Sobolev orthogonal polynomials (DSOPS) relative to a symmetric bilinear form (p,q)={{{{ INT _{ } }}}} pqd$\mu$0 +{{{{ INT _{ } }}}} p qd$\mu$1, where d$\mu$0 and d$\mu$1 are signed Borel measures on . We find necessary and sufficient conditions for {Rn($\chi$)}{{{{ { } atop {n=0} }}}} to satisfy a second order difference equation 2($\chi$) y($\chi$)+ 1($\chi$) y($\chi$)= ny($\chi$) and classify all such {Rn($\chi$)}{{{{ { } atop {n=0} }}}}. Here, and are forward and backward difference operators defined by f($\chi$) = f($\chi$+1) - f($\chi$) and f($\chi$) = f($\chi$) - f($\chi$-1).

  • PDF

Modeling radon diffusion equation in soil pore matrix by using uncertainty based orthogonal polynomials in Galerkin's method

  • Rao, T.D.;Chakraverty, S.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.487-499
    • /
    • 2017
  • This paper investigates the approximate solution bounds of radon diffusion equation in soil pore matrix coupled with uncertainty. These problems have been modeled by few researchers by considering the parameters as crisp, which may not give the correct essence of the uncertainty. Here, the interval uncertainties are handled by parametric form and solution of the relevant uncertain diffusion equation is found by using Galerkin's Method. The shape functions are taken as the linear combination of orthogonal polynomials which are generated based on the parametric form of the interval uncertainty. Uncertain bounds are computed and results are compared in special cases viz. with the crisp solution.

EVALUATION OF INTEGRAL FORMULAS ASSOCIATED WITH THE PRODUCT OF GENERALIZED BESSEL FUNCTION WITH ORTHOGONAL POLYNOMIALS

  • Khan, Nabiullah;Nadeem, Raghib;Usman, Talha;Khan, Abdul Hakim
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.135-152
    • /
    • 2019
  • In the last decades, various integral formulas associated with Bessel functions of different kinds as well as Bessel functions themselves, have been studied and a noteworthy amount of work can be found in the literature. Following up, we present two definite integral formulas involving the product of generalized Bessel function associated with orthogonal polynomials. Also, some intriguing special cases of our main results have been discussed.

FINITE INTEGRALS ASSOCIATED WITH THE PRODUCT OF ORTHOGONAL POLYNOMIALS AND WRIGHT FUNCTION

  • Khan, Nabiullah;Khan, Mohammad Iqbal;Khan, Owais
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.597-612
    • /
    • 2021
  • Several useful and interesting extensions of the various special functions have been introduced by many authors during the last few decades. Various integral formulas associated with Wright function have been studied and a noteworthy amount of work have found in literature. The principal object of the present paper is to evaluate finite integral formulas containing the product of orthogonal polynomials with generalized Wright function. These integral formulas are expressed in terms of Srivastava and Daoust function. Some interesting particular cases are obtained from the main results by specialising the suitable values of the parameters involved.

FUNCTION APPROXIMATION OVER TRIANGULAR DOMAIN USING CONSTRAINED Legendre POLYNOMIALS

  • Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • We present a relation between the orthogonality of the constrained Legendre polynomials over the triangular domain and the BB ($B{\acute{e}zier}\;-Bernstein$) coefficients of the polynomials using the equivalence of orthogonal complements. Using it we also show that the best constrained degree reduction of polynomials in BB form equals the best approximation of weighted Euclidean norm of coefficients of given polynomial in BB form from the coefficients of polynomials of lower degree in BB form.

  • PDF

Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials

  • Jamali, M.;Shojaee, T.;Kolahchi, R.;Mohammadi, B.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.691-712
    • /
    • 2016
  • In this editorial, buckling analytical investigation of the nanocomposite plate with square cut out reinforced by carbon nanotubes (CNTs) surrounded by Pasternak foundation is considered. The plate is presumed has square cut out in center and resting on Pasternak foundation. CNTs are used as amplifier in plate for diverse distribution, such as uniform distribution (UD) and three patterns of functionally graded (FG) distribution types of CNTs (FG-X, FG-A and FG-O). Moreover, the effective mechanical properties of nanocomposite plate are calculated from the rule of mixture. Domain decomposition method and orthogonal polynomials are applied in order to define the shape function of nanocomposite plate with square cut out. Finally, Rayleigh-Ritz energy method is used to obtain critical buckling load of system. A detailed parametric study is conducted to explicit the effects of the dimensions of plate, length of square cut out, different distribution of CNTs, elastic medium and volume fraction of CNTs. It is found from results that increase the dimensions of plate and length of square cut out have negative impact on buckling behavior of system but considering CNTs in plate has positive influence.

Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method

  • Kim, Kook-Hyun;Kim, Byung-Hee;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.267-280
    • /
    • 2012
  • An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

MATHIEU GROUP COVERINGS AND GOLAY CODES

  • Yie, Ik-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.289-317
    • /
    • 2002
  • We associate binary codes to polynomials over fields of characteristic two and show that the binary Golay codes are associated to the Mathieu group polynomials in characteristics two. We give two more polynomials whose Galois group in $M_{12}$ but different self-orthogonal binary codes are associated. Also, we find a family of $M_{24}$-coverings which includes previous ones.