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DISCRETE SOBOLEV ORTHOGONAL POLYNOMIALS
AND SECOND ORDER DIFFERENCE EQUATIONS

H. S. Jung, K. H. KwoN AND D. W.,LEE

ABSTRAQT Let {R,(z)}32, be a discrete Soboiev orthagonal poly-
nomials (DSOPS) relative to a symmetric biligear form

80.0) = [ podua-+ [ BpBgdia

where dug and dyy are signed Borel measures on R. We find nec-
essary and sufficient conditions for {R,(z)}2, to satisfy a second
order difference equation

L{z) AVY(z) + £(2)Ay(z) = Iy(2)
and classify all such {R,(z)}32,. Here, & and V are forward and
backward difference operators defined by Af(s) = f(z + 1) - f(x)
and Vf(z) = f(z) - f(z - 1).

1. Introduction

Let P be the space of real polynomials ina single va;riaﬁe and deg(m)
the degree of any 7(z) € P with the convention that deg(0) = —1. By a
polynomial systein (PS), we mean a sequence of polynomials {¢.(2)}%,
with deg(¢n) =n, n > 0.

Any bilinear form ¢( -) defined on P x P is called quasi-definite (re-
spectively, positive-definite) if the double sequence (called the moments
of @5(1 ))

Pan = (2™, 2") (m and n > 0)
satisfy the Hamburger condition ‘
An(@) = detdi 7o # 0 (respectively, An(g) > 0)
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for each n > 0. It is well known ([7]) that if the bilinear form ¢(-,-) is
quasi-definite (respectively, positive-definite), there is a PS {R,(z)}%,
such that

(1.1) &(Rm, Rn) = Knbpn, mand n >0,

where K, is a non-zero (respectively, a positive) constant and vice versa.
In this case, each R,(z) is uniquely determined up to a non-zero constant
multiple and we call {R,(z)}3, a (generalized) orthogonal polynomial
system (OPS) relative to ¢(:, ).

We now let A and V be the forward and backward difference operators
defined by

Af(z)=flz+1) - f(z) and Vf(z) = f(z) - fz - 1)

and consider a symmetric bilinear form on P x P given by

12)  é(pq) = /R p()a(x) duua(z) + / Ap(z)Ag(z) dpn(2),

where dp;(z) (i = 1,2) is a signed Borel measure on the real line R.
When ¢(,-) in (1.2) is quasi-definite, we call any PS {R,(z)}32, satis-
fying (1.1) a discrete Sobolev orthogonal polynomial system (DSOPS).
When duy(z) = 0, {R.(z)}2, is just an ordinary OPS relative to dup(z).

In this work, we first find necessary and sufficient conditions for a
DSOPS relative to ¢(-,+) in (1.2) to satisfy the second order difference
equation

(1.3) Liyl(z) = L(z)AVy + &1(z) Ay = My,

where £p(z) = l21? + £z + £y and £1(2) = €117 + £y are polynomials
and A, is the eigenvalue parameter given by

’\n = fggn(n - 1) + Znn, n > 0.

We then classify all such DSOPS’s which generalize the discrete classical
orthogonal polynomial systems, that is, OPS’s relative to dye(z), which
are eigenfunctions of the difference equation (1.3). The general theory
of discrete classical OPS’s is rather well developed, for which we refer to
[3, 5, 6, 8]. Similar problem, where the difference operator is replaced
by the differential operator, is handled in [7].
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2. Polynomials satisfying difference equations

Due to Boas’ ([1]) or Duran’s ([2]) theorem on the moment problem ,
any linear functional ¢ on P, which we call a moment funét;onal, can be
represented as an the integral of the form

(o) = /R w(z)du(z), * (7 € P)

or
(o,m) = /l;w(a:)w(m) dwf (71'6 P),

where p(z) is a function of bounded variation on R and wW(z) is a C*-
function in the Schwartz space of rapidly decaying functions.. Hence, in
studying DSOPS’s the symmetric bilinear form in (1.2) can be replaced
by ‘

(2.1)  ¢(p, @) = (o,pg) + (T, ApAg),

where o and 7 are moment functionals. As we shall see later, it is
much more convenient to use moment functlonals instead of their mtegral
representations as in (1.2). We call a DSOPS {P, (:1:)},,__0 relative to -
¢(-,+) in (2.1) with 7 = 0 to be an OPS relative to .

For a PS {P,(2)}%,, we call any moment functlonal o satisfying

(0,P) #0 and (0,FP,) =0, n>1

a canonical moment functional for {Pn(x)}ngo, which is unigue up to a
non-zero constant multiple. A PS {P,(z)}2%, is called a weak orthogonal
polynomial system (WOPS) if there is a non-zero moment functional o
such that (o, P,,P,) = 0 for m # n. Note that if { R,(2)}7%, is 2 WOPS
relative to o or a DSOPS relative to ¢(-,+)-in (2.1), then o must be a
canonical moment functional for { R,(z)}32,.

For a moment functional o, a polynomial m(z), and 4 real constant
a, Ao, Vo, no and 7,0 are moment functionals defined by

(Ag, ) = —(0,VY), (Va,¥)=—(0,A)
(o, ) = (o, 7Y)
(Ta0, 1/’) = <U, T_o¥) = (071/’(:” + a))) ('d) € P)

For convenience we denote 7,0 by o{z — ). Then, the followings are
easy consequences of definitions.
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LEMMA 2.1. Let 7(z) be a polynomial and o a moment functional.
Then
(i) for any a € R, o(z — a) = 0 if and only if 0 = 0;
(i) Ao =0 (or Vo = 0) if and only if ¢ = 0;
(ii) A(mo) = (Am)o + n(z + 1)Ac = Ao + o(z + 1)Ax;
(iv) when o is quasi-definite, 7o = 0 if and only if m(zx) = 0.
By a direct calculation, it is easy to see that the difference equation
(1.3) has a unique monic polynomial solution of degree n for each n > 0
except possibly for a finite number of values of n and for those excep-

tional values of n, there is either no polynomial solution of degree n or
infinitely many monic polynomial solutions of degree n.

DEFINITION 2.1. ([4]) The difference operator L[-] in (1.3) (or the
equation (1.3) itself) is called admissible if A,, # A, for m # n.

LEMMA 2.2. For the difference equation (1.3), the followings are equiv-
alent:

(i) L[] in (1.3) is admissible;
(ii) sp :=Logn + €y, #0 forn > 0;
(iii) For each n > 0, the difference equation (1.3) has a unique monic
polynomial solution of degree n.

Proof. See Lemma 2.4 in [6]. O

To discuss the orthogonality of polynomials satisfying the difference
equation (1.3), we need the following which involves discrete moment
equations.

LEMMA 2.3. If the difference equation (1.3) has a PS {P,(z)}%, of
solutions, then any canonical moment functional o of { P,(z)}%, satisfies

(22) A(ZQO') - Zla =0
or equivalently

(23) SpOny1 + ('n(2n — 1)[22 + nle + nZu + Zm)an + n£2(n - l)O'n_l,
=0 n>1,

where

on:=(a,z["]), n>0 o0,=0 for n<0
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and z™ are factorial polynomials:
2 - 1, 2 = g(z = 1) (2 —n+1).
Moreover if the difference equation (1.3) is kadmissible, then the equation
(2.2) or equivalently (2.3) has a unique linearly independent solution.
Proof. See Lemma 2.5 and Lemma 2.6 in [6] (see "'ésls'o Bh. 0

-

We call (2.2) the discrete moment equation for the dlﬁerence equatlon
(1.3). By Favard’s theorem, any monic PS {P,(z)}%, is an OPS if and
only if { P (z)}3, satisfy a three term recutrence relation

Poa(z) = (& =~ ba)Pa(®) = caPaca(®), n 20 (Pa(z) = 0),

where ¢, # 0, n > 1. In particular, {P,(2)}2, is an OPS relative to a
positive-definite moment functional if and only if ¢, > 0, » > 1. In this
case, if we let o be a canonical moment functional of {Pn(m)}ﬂ_o with
(0,1) =1 and ¢y = 1, then {0, PZ) = cpcp-q---Cp, n > 0.

The next theorem gives a necessary and sufﬁcient condition for the
difference equation (1.3) to have an OPS as-solutions.

THEOREM 2.4. The difference equation (1.3) has 2 monic OPS
{Pu(z)}2, as solutions if and only if

(iy 5, #0, n 2 0;
(ii) 82(—-5;;) # 0, where t, = foon? + (€oy + £yy)n + £30, n 2 0.

In this case, the coefficients of the three term recurrence relation are
Nta-i  (n+ 1t

by = +n, n>0,
Son~2 Son
and
- t,-
cn:_—-._._n.frl_z._ez(_ nl), S-lzl, nZl
S9n—-352n—1 Son-2
Proof. See Theorem 3.5 in [6]. ' O

Note that for any moment functional o satisfying (2.2) and any poly-
nomial p(z), we have

Lipl(z)o = Al(Vp)lao]-

Now assume that the equation (1.3) is admissible, that is, s, # 0, n > 0
and let o be a canonical moment functional of the unique monic PS
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{Pu(z)}2, of solutions of the equation (1.3). Then

M0, PnPn) = (L[P,]o, Py) = (A[(VB,){0], Py)

= —(ly0,VP,VP,) = A\u(o, PhPy), mandn >0
so that (o, P, P,) = 0 for m # n, that is, {P,(z)}2, is a WOPS. But,
{Pn(z)}32, need not be an OPS in general, unless the condition (ii) in
Theorem 2.4 is satisfied.

The condition (i) in Theorem 2.4 is just the admissibility of L[] (cf.
Lemma 2.2). Hence, if the equation (1.3) has an OPS {P,(z)}%, as
solutions, then {P,(z)}%, must be orthogonal relative to any non-zero
solution o of the discrete moment equation (2.2).

Now, we are ready to classify all OPS’s satisfying the difference equa-

tion (1.3) (cf. [6]). There are four cases, up to a real linear change of
variable, to be considered according to the root system of £;(z):

where A and (> 0) are real numbers. In case ¢3(z) = 0, it is easy to see
that the equation (1.3) cannot have an OPS as solutions (see Remark
3.1).

In the following classification, we always let b, and c, be the coeffi-
cients of the three term recurrence relation satisfied by a monic PS of
solutions of the corresponding difference equation.

Case 1: /5(z) = (A — z). In this case, set
at+y=A, a+B+2=—f;, and (B+D(y—-1)={yp
so that the equation (1.3) becomes
(24) 2y +a-2)AVY+[(B+1)(y—1) - (a+ S +2)z]Ay
=-nn+a+f+ y.

By Theorem 2.4, (2.4) has a monic OPS {hg{”ﬂ ) (z,7)}2, as solutions if
and only if

@, ﬂ) e £} a+ﬁ+15 a+)6+7¢z_ ::{_1>_27"'}'

In this case,

Zn(n—'y)(n—l—ﬂ) _(r+)n—y+1(n+B+1)
" 2n+a+p Zn+a+pB+2

+mn, n>0,
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and

_n{n+a+B)(nt+a)n+fy-—n)n+ta+B+y)

n —

@Gn+a+pf-D)2n+a+pP@n+a+B+1) n2l

Note that {h(‘" ) (z,7)}2, cannot be a positive-definite OPS since ¢, < 0
for n large.

REMARK 2.1. Tt is worth to note that the constants «, £, and y need

not be real but {h{™?(z,7)}2, is always a real PS. For example, the
following difference equation :

z(1 - 2)AVy — (1 + 2)Ay = —n’y ‘

has a real OPS {hﬁf"ﬂ )(a:,'y)},‘;?_.o as solutions by Theorem 2.4, where
a=—1, f=-=14+4,andy=1+1.
REMARK 2.2. f a+ 3+ 1 ¢ Z~, then the difference equation (2.4) is

admissible and so has a unique monic PS {A? (z,7)}2, as solutions,
which is a WOPS. In particular, if either @ > -1, 3> =1, and y = N
ora<1l—N,B<1~-N,andy=N for some positive integer N, then
{r&P) (g, N}, has the finite orthogonality:

(o, [P (@, N)P) = {

positive, 0 <n<N-1
0, n> N,

where o is a canonical moment functional of {hP (2, N)}2,. In the

literature([8}), ), {hP(z, N)}=} are known as Hahn polynomials of type
1if a.> ~1 and 8 > —1 and Hahn polynomials of type 2ifa <1~ N
and f<1—N.

Case 2: fy(x) = 2%+ (? (¢ > 0). In this case, the equation (1.3)
becomes

(2.5) (o? + ()AVy + (az + b)Ay = (n+a — Lyny.

By Theorem 2.4, (2.5) has a monic OPS (A2, ¢)}, as solutions if
and only if e — 1 ¢ Z~. In this case,

nfn -1’ +an-1)+b (n+1Dn*+an+b]

b, = >
" on+a—2 2n +a +n, n20
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and

¢, = -n(n+a—2) ([("—1)2+a(n—.1)+b]2

(2n+a-3)(2n+a-1) (2n+a —2)? +Cz)’ nzl

Hence, {h(a b)(a: ¢)}%2, cannot be a positive definite OPS.

Case 3: {(z) = z. In this case, the equation (1.3) can be parameter-
ized as

(2.6) zAVy + [a — (1 — p)z]Ay = (.~ 1)ny.

By Theorem 2.4, (2.6) has a monic OPS as solutions if and only if p # 1
and pyn+a#0,n=0,1,---.
If 4 =0 and a # 0, then the difference equation (2.6) becomes

zAVy + (a — z)Ay = —ny,

which has a monic OPS {c;, (“) ()}, known as Charlier polynomials
({8]), as solutions. In this case,

bp=n+a, n>0, and c,=an, n>1.

Note that {c{ ()}, is a positive-definite OPS only for a > 0.
If 4 # 0, then by setting a = ~yp, the difference equation (2.6) becomes

zAVy + [yp — (1 - p)z]Ay = (1 — )ny,

which has a monic OPS {m(7’” )( )32, known as Meixner polynomials
([8]), as solutions if and only if 4 # 0,1 and v — 1 ¢ Z~. In this case,

1
bn = m((l +un+ap), n>0

and
un
(1 — p)?

Note that {m{™)(z)}, is a positive-definite OPS only for i > 0, i # 1,
and v > 0. In the literature ([8]), Meixner polynomials {m{"* (z)}*, is
usually introduced with 0 < £ < 1 and > 0. However, {m('”‘ ()},

Cn = (n+y-1), n>1
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is also a positive-definite OPS for p > 1 and 4 >0, which fis ‘orthogonal
with respect to a discrete weight function

o k
() = k};g %5@, - k).

REMARK 2.3. When p # 1 and a = —uN for some positive integer
N, we set p = -£ so that the equation (2.6) becomes

—% Ay(e) = ——-y(x) (g #0, pry= 1).

The equation (2.7) is admissible so that has a unique monic WOPS
{k(p)(w, N)}Z; as solutlons, which has the finite orthogonality:

Ko positive, 0 <nEN ‘

@7 cAVyE)+

In the literature ([8]), {k&(z, N)}, aré known as Krawchuk polyno-
mials.

Case 4: {y(z) = 1. In this case, the equation (1.3) becomes
(28) AVy +- (811$ + em)A:l} = £1my.

By a real linear change of variable: ©— —x — 1—2’5‘9 and using A -V =

AV, the difference equation (2.8) can be transformed into
zAVYy +(a - 2)Ay = -ny  (a = —=1/4n),
which has Charlier polynomials {c{”(z)}22, as solutions (cf Case 3).

Lastly in this section, we examine more closely the orishogonahty of
polynomial solutions of the difference equation (1.3). For any monic PS
{Pa(2)}2; We can write P,y (z) as .

(2.9)
n-2
Prii(2) = (w-S”)Pn(w) E @ =D &RE)  @21)
k=0 .

where £)'= &1 =0 and P_y(z) =

LEMMA 2.5. Assume that the difference equatxon (1. 3) bas & monic
PS {Py(x)}24 as solutions. Let N > 0 be the largest m%eger sueh tbat
Ay = 0. Then -



390 H. S. Jung, K. H. Kwon and D. W. Lee

(i) & =0ifn>2andn+1#N

and
(ii) for any moment functional solution ¢ of the discrete moment equa-
tion (2.2),
(210) (o B) =& &0 EVnln BY), a2 N+,

where &2 and €771 are the constants given in (2.9).

Proof. First note that \,, = A, for m # n if and only if m +n = N.
Hence we have for m # n and m 4+ n # N (cf. Proposition 3.2),

(2.11) (0, PuPy) =0

for any solution o of the discrete moment equation (2.2).

(i) Let o be a canonical moment functional of {P,(z)}%,. Then o
satisfies the discrete moment equation (2.2) by Lemma 2.3. If we apply
o to the equation (2.9), we obtain for n > 2

0 = (0, Pas1) = {0,2P,) — €40, B,) — £ Yo, Pa_y) Zg (0, P

= (0,2Pa) — £(0, Po)

since (0, P,) = 0 for n > 1. Hence we have (i) since (o, P;) # 0 and
(0,zP,) = (0, AP,) =0forn>2andn+1#N.

(ii) Now let o be any solution of (2.2). If we multiply the equation (2.9)
by P,_i(z) and apply o, then we obtain from (2.11)

0= (0, Pos1Po1) = (0, P2) — &7 (0, P2_,) — £5(0, PoPa_y)

t < n—1

forn > N+1 Ifn > N+1, then (5, BP,_;) = 0 by (2.11). If
n=N+1and N > 1, then £, = 0 by (i). Finally if N = 0, then
&) = 0. Therefore, we have

(o, P2y = ¢ Yo, P2 ), n>N+1,

y 4 n—1

from which (ii) follows immediately. O

We are now ready to prove the following result which we need later
in section three and is interesting in its own right.

THEOREM 2.6. Assume that the difference equation (1.3) has a monic
PS {P,(z)}%, as solutions. If {P,(z)}%, is not an OPS, then for any
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solution o of the discrete moment equation (2.2), there is an integer
m > 0 such that

(0,P2)=0 forall n>m+1

Proof. If A, # 0, n > 1, then L[] is admissible and {P,(z)}2, is
a WOPS. Consequently, ,’§"1 = 0 for some k£ > 1 by Lemma 2.5 since
{P.(z)}% is not an OPS. Hence (o, PZ} = 0, n > k by (2.10). Now,
we assume that Ay = 0 for some N > 1. For each n > 0, let P,(z) =

Zn: npz® (n* = 1) be a monic polynomial of degree n. Then P,(z)

k=0
satisfies the difference equation (1.3) if and only if

(2.12)
(O = AR = (k + 1) [look® + €ank + nk + o)y

n
+3 MG+ DG+ V(-1 FPG,i - k), 0<k<n,
=k
where 7%, = 7%, = 0 and P(n,m) = n{n —1)---(n —m + 1). Since
A~ M #0for0< k< Nand Ayo— N #0for 0 S kS N+ 1,
the equation (2.12) is uniquely solvable for n*1, n¥*1, n¥*2, and n{ 2.

Actually, we have

SIS L N VS VP
Son
and
A+l n(n -+ 1)(tn-1tn + n52n)

n—-1 "7

=N 1).
289n-159n (n N+1)

Note that since Ay = 0 or equivalently sy_; = 0, sen-1 % 0, soy # 0
and sy, # 0. Hence, we have

N -(N+ l)SN.‘l —tN
et S2N-182N+1 2( SoN )
and the conclusion follows by (2.10). O

3. Classification of discrete Sobolev orthogonal polynomials

From here on, we shall consider DSOPS’s relative to a symmetric
silinear form (2.1). We first obtain necessary and sufficient conditions for
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a DSOPS relative to ¢(-,-) to satisfy a second order difference equation
(1.3).

THEOREM 3.1. For a bilinear form ¢(-,-) in (2.1), the followings are
all equivalent.

(i) The difference operator L[] in (1.3) is symmetric on polynomials
relative to ¢(-,-), that is,

(3.1) ¢(Llpl,q) = #(p, Llgl), (PgeP).
(ii) The moment functionals o and 7 satisfy the functional equations
(3.2) A(lyo) —bio =0
and
(3.3) A(ler) — [A(l+ b)) + 4] = 0.

(iil) The moments of o and T given by o, := {0, z) and 7, = (7, zI)
satisfy for n > 0,

(3 4) (32271 + 311)0'"4.1 + [22271(271, - 1) + (221 + Zu)’n + EIQ]O'n

) + n[ézz(n -— 1)2 + Egl(’n - 1) + 820]0,,_1 =0

and
(3 5) (ezz‘n + 2099 + Zn)Tn.’_l + [82271(277, — 1) + (621 + 2099 + eu)n
' + £99 + Ooy + €11 + Em]'rn + n[ég(n) + 4, (n)]’rn_l =0,

where 0, =0 and 7, =0 ifn < 0.

Furthermore if ¢(-,-) is quasi-definite and {R,(z)}%,, is a DSOPS rela-
tive to ¢(:,-), then the statements (1), (i), and (ii7) are also equivalent
to

(iv) {R.(z)}2, satisfies the difference equation (1.3).

Proof. (i)<(ii): It is easy to check the following identities: for p,q €
P,

¢(Lipl, q) = (L*(gol, p) — (L*[V[(Aq)7]}, p),
¢(p, Llg)) = (L{glo, p) - (V[(AL[g))7],p),
where L*[-] is an adjoint of L[-] defined by
L*ly] = AV(by) - V().
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Hence, the equation (3.1) is equivalent to .

L*(go] - L*[V{(Ag)T]] - Liglo + VI(AL[g)T] =0, (¢€P),
which can be written out as
A7) = (Al + &) + Q)T]A Vg + [(f2 + ) VT = ZIT]AW
-+ V[(£2+ el)VT £IT]V2(] + ZAKQ +£1)VT : érr]AVq
+[AV[(f + 6)VT — 617 + (V(£e0) — lio + V(610)[Vyq
+ [A(lp0) ~ bio]Ag + V[A(byo) — 4yolg = 0. o
We can see that the condition (3.6) is equivélént to the fact that o and
7 satisfy (3.2) and (3.3) since A(fy7) — [£y+ A4 + &)} = 0 if and only
if (bp + £)VT = £37 = 0 and V(ly0) — b0 + V(¢i0) = 0 if dnd only if
A(f0) = 1o by Lemma 2.1.
(ii)«>(iil): The equivalence of (3.2) and (3.4) is proved in Lemma 2.3
and the equivalence of (3.3) and (3.5) can be proved similarly.

We now assume that {R,(z)}%, is a DSOPS relative to ¢(:, ).
(i)=>(iv): Since L{R,}(z) is a polynomial of degree < n, we may write.

(3.6)

LB = 3 CuRi(a)
k=0

for some real constant Cpj, 7 = 0,1, ,n. Then for0<k<n=~1,

Cukd(Ri, Bi) = chm(RJ,Rk)—qs(L[ Ral, Ba) = $(Bny L{B)) = 0;

k=0
since deg(L[Rk]) < k. Hence, Cp, =0 for k=0,1,--- ;n ~ 1 so that
LIR,)(2) = ConRa(z) = AaRn()

by comparing the coefficients of " on both sides.
(iv)=(1): (3.1) follows immediately from

S(LIRal, B) = Md(Boy Bon) = ARy Box) = MRy LiRml)
since {R,}2, is a basis of P. | B

When 7 = 0, the equivalences of (i), (ii), (iii), and (iv) in Theorem
3.1 are proved in [6] (see also [3]).
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REMARK 3.1. When #5(z) = 0, the difference equation (1.3) reduces
to the first order difference equation
(3.7) 6(z)Ay = luny,
which can have a PS as solutions only when ¢;; # 0. In this case, the
general solutions of the moment equations (3.2) and (3.3) are
g = 01(5(517 + em/en) and T = CQCS((L‘ -+ 610/811),

where ¢; and c; are arbitrary constants. Then the corresponding sym-
metric bilinear form ¢(-, ) cannot be quasi-definite. Hence, the equation
(3.7) cannot have a DSOPS as solutions. Similarly, we can also show
that if £y(z) + £1(z) = 0, then the equation (1.3) can not have a DSOPS
as solutions.

REMARK 3.2. If we act A on both sides of (1.3), then 2(z) = Ay(x)
satisfies

(38) egAVZ + {51 + A(Zl + 82)]Az = ()\n - Aﬂl)z.

Note that (3.3) is the discrete moment equation for the difference equa-
tion (3.8).

PROPOSITION 3.2. If L[p| = Ap and L[q] = pg for some p,q € P and
A # u, then

#(p,q) =0

for any solutions o and T of the discrete moment equations (3.2) and
(3.3) respectively.

Proof. It immediately follows from the fact (cf. Theorem 3.1)
(A — wé(p 9) = (Llpl,9) — 4(p, L{4])- O

We are now ready to classify all DSOPS’s relative to the bilinear form
#(-,-) in (2.1) satisfying the difference equation (1.3). In the following,
we shall assume f(z) # 0 and fy(z) + £1(z) # O (see Remark 3.1).
Concerning the symmetric bilinear form ¢(-,-) in (2.1), there arise the
following three cases:

Type A: o is quasi-definite;
Type B: Both o and 7 are not quasi-definite;
Type C: o is not quasi-definite but T is quasi-definite.
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We now consider three cases individually.

Type A: ¢ is quasi-definite.

It is well known (cf. Proposition 2.5 in [5]) that if {P,(z)}%, is a
discrete classical OPS relative to o satisfying the equation (1.3), then
{VP,z(a:)}n=0 is-also an OPS relative to £,(z)o. In this case, {AP,(z)}2,
is also an OPS relative to fp(z + 1)o(z + 1) = (Zg(m) + #y(z))o since
Af(z) =Vf(z+1) and (Lo) = bio.

THEOREM 3.3. If the difference equation (1. 3) has a DSOPS {Rn(x)}nao
relative to ¢(-,-) as solutions and ¢ is quasi-definite, then {R,,L(ac)}n_0
must be a discrete classical OPS relative to o and either 7 = 0 or T js
also quas1-deﬁmte

Proof. Since o is a canonical moment functlonal of {Rn(a;)},,,_o,
{Rn(z)}22, must be an QPS so that a discrete classical OPS relative
to o when ¢ is quasi-definite. Then {AR,(2)}22, is also-an OPS rela-
tive to 7 = (£2(z) + £1(z))o and satisfy the equation (3.8). Hence, T and
7 satisfy the moment equation (3.3), which is uniquely solvable (up to
a constant factor) by Lemma 2.3 so that 7 = a7 for some constant a.
Thus, 7=0ifa=0o0r 7is quas1—deﬁmte if a# 0. 0

Type B: Both o and T are not quaél-deﬁhlte
Here, we will show that any DSOPS relative to a bilinear form ¢(-, -)

in (2.1) cannot satisfy a second order difference equation of the form
(1.3).

THEOREM 3.4. Let {R,(z)}%2, be a DSOPS relative t6 a quasz-deﬁmte
bilinear form ¢(-,-) in (2.1). If both o and T are not quasi-definite, then
{Rn(2)}2, cannot satisfy a difference equation of the form (I 3).

Proof. Assume that {R,(z)}2, satisfies the difference equation (1.3).
Then by Theorem 3.1, o and 7 must be non-trivial solutions of the mo-
ment equations (3.2) and (3.3) respectively. Hence, {R,(z)}, cannot
be an OPS since 0 is not quasi-definite. On the other hand, {AR,(2)}2,
is a PS satisfying the difference equation (3.8) and 7 satlsﬁes the cor-
responding moment equation (3.3). Hence, {AR,(2)}%, cannot be an
OPS since 7 is not quasi-definite. Then, by Theorem 2.6, we have

(0, BY) = (r, (AR} =0
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for all n large enough and so
$(Ra, Ra) = (0, B2} + (1, (ARA)") = 0

for all n large enough, which contradicts the fact that {R,(z)}%, is a
DSOPS relative to ¢(,-). g

Type C: o is not quasi-definite but 7 is quasi-definite.

THEOREM 3.5. Assume that the difference equation (1.3) has a PS
{Rn(z)}2, of solutions, which is a DSOPS relative to the bilinear form
&(+,+) in (2.1). If 7 is quasi-definite, then

(i) {AR,(x)}22, is a discrete classical OPS relative to T and satisfies

the equation (3.8);

(ii) {Rn(z)}2, is a WOPS relative to o;

(iii) (€2 + £1)o = at for some constant a so that either (¢ + £1)o0 = 0
or (€ + ¢,)o is quasi-definite.

Proof. (i) Let {Qn(z)}%, be the monic OPS relative to 7. Since 7
satisfies the moment equation (3.3), {Qn(z)}32, is a discrete classical
OPS satisfying the difference equation (3.8) (cf. Theorem 3.1). Hence,
the equation (3.8) must be admissible. On the other hand, the PS
{AR,1(x)}2, also satisfies the difference equation (3.8). Hence,
AR, 1(z) = C,Qu(z), n > 0 by Lemma 2.2, where C, is the coeffi-
cient of " in AR, 1(x).

(ii) It follows from the orthogonalities of {R,(x)}32, relative to ¢(:,-)
and {AR, ()}, relative to 7.

(iii) Since the equation (3.8) is admissible, the moment equation (3.3)
has only one linearly independent solution. Since 7 and (£ +¢;)o satisfy
the moment equation (3.3), we have ({3 + ¢1)0 = at for some constant
a so that either (I + ;)0 = 0 if a = 0 or (l2 + l1)o is quasi-definite if
a#0. a

As in section two, we may assume that
bz) =z(A-2), 2+ =z, 1 (A real and ¢ > 0).

In each case, we look for conditions that the equation (3.2) has no quasi-
definite moment functional solution and the equation (3.3) has a quasi-
" definite moment functional solution.
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Case C.1. ly(z) = z(A — z). In this case, the diﬁerence ’éguaﬁqn (1.3)

can be written as

(3.9) ey +a-)AVy+[{(B+D)(y=1) - (@+8 +2)a:]

= —n(n+a+/3+1)y
Then the correspondmg dlscrete moment equa.tlons are
(3.10) Afz(y+a—2)o] = [(B+ 1)(y - 1) - (a+ B+ 2szlo
(311)  Als(y+a-2)r] =[(F+2(r- -2) = (e + f+ 4],

The equation (3. 10) has no quasi-definite mement functional solution
fandonly fa€Z- orfeZ ora+f+1eZ gy €l o
a+B+v € Z-. The equation (3.11) has a quasi-definite moment
functional solution if and only f a+1¢ Z7,f+1¢ Z~, a+§+2 ¢ Z,
¥—1¢Z* and o+ B+ 7+ 1¢ Z". Hence, there are five cases:

(l)a = —'1’ gb“ 1) 1 —")’,t&ﬁdﬁ'}"}’ é Z-;

(i) ==, ¥ —vy,and a+v¢Z";

iy y=1, B, anda+5+2¢7Z; .

(iv)a+8=-2a0¢Z ,and y¢Z"U{0}UZ;

VM) a+pft+y=-1a ﬂ,a+ﬂ+1¢Z‘ and'ygéZ"‘ -{1 2,---}

We now have:

THEOREM 3.6.

() Ifa = —1, B+1,1-~, and B+~ ¢ Z~, then the d;tfewnce equation
(3.9) always has a DSOPS {hS P (2, 7)), as solutwm, which are
orthogonal relative to
(8) da(p,q) = Ap(y — D)aly — 1) + (WO (z, 4 — 1), DpAq) if

B # —1, where A is any non-zero ¢onstant;

(b) ¢a5(p,g) = Ap(0)g(0) + Bp(y — 1)(1(7 -+ (W(" Oz, vy -
1), ApAq) if B = -1,v # 1, and hl' 1 (ac,'y) = & + a, where
a, A, and B are arbitrary constants with A+ B # 0, Aa® +
B(7-1+a)2+1760 and Ao+ By —1+a)=0; .

(c} pa8(p,q) = Ap(0)¢(0)- B [P(O)‘I'(O)+P (0)9(0)]+'{W(° 9(z,0),
ApAgq) if - =~ =1 and hf =t (:s, 1) = & + a, where a, A;
and B are arbitrary constants with A # 0, Ab* —2Bb+1 # 0,
and Aa — B=0.

(i) fB=~1,a,1~7, and a+ ¢ Z, then the difference equation
(3.9) always has a unique DSOPS {h(“"l) (z,7)}%, as solutions,
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which are orthogonal relative to

¢a(p,q) = Ap(0)q(0) + (W0 (z, v — 1), ApAg),

where A is an arbitrary nonzero constant.

(i) Ify =1, o, 0, and a + f+ 2 ¢ Z~, then the difference equation
(3.9) always has a DSOPS {hﬁf‘*" )(a:, 1)}, as solutions, which are
orthogonal relative to
(a) dalp, q) = Ap(0)q(0) + (WP (z,0), ApAg) if a+ 5 # -2,

where A is an arbitrary non-zero constant;

(b) ¢45(p,q) = Ap(0)¢(0) + Bp(a+ 1)g(a+ 1) + (W18 (2, 0),
ApAg) ifa+p = —2, and hg“’ﬁ) (z,1) = z+a, wherea, A, and B
are arbitrary constants with A+B # 0, AB(a+1)*+A+B # 0,
and a(A+ B)+ (a+1)B =0.

(ivyIfa+p8 =-2a,8¢ Z, andy ¢ Z*U {0} UZ", then the
difference equation (3.9) has no DSOPS as solutions.

(v) Ifa+f+v=-1,a,8,—, and a+3+1 ¢ Z~, then the difference
equation (3.9) always has a DSOPS {hﬁ{’"’ )(a:,'y) % o as solutions,
which are orthogonal relative to

$4(p, @) = Ap(a + 7)g(a + ) + (WA (2 — 1), ApAg),

where A is an arbitrary nonzero constant.

Here, W@A)(z, ) is the canonical moment functional of the monic dis-
crete classical OPS {h{®)(z,~)}, with (W@F)(z, v),1) = 1.

n=0

Before giving the proof, we note that in cases (a) of (i), (ii), (a) of (iii),
and (v) above, the equation (3.9) is admissible so that each A{™” )(x, ),
n > 0, is unique. However, in other cases except (iv), the equation
(3.9) is not admissible but RleP )(a:,'y), n # 1 is unique and for n = 1,
h(la’ﬂ )(ac, ) = z + a satisfies the equation (3.9) for any constant a.

Proof of Theorem 3.6. We prove only (b) of (i} and (iv) since all the
other cases can be proved similarly. When o« = —1,8 = —1 and v # 1,
the equation (3.9) becomes

(3.12) z(y —1—-2)AVy = —n(n — 1)y,

which is not admissible. However, it is easy to see that the equation
(3.12) has a unique monic polynomial solution hg,_l’_l)(z,'y) forn #1



Discrete Sobolev orthogonal polynomials 399

and for n = 1, any polynomial hg_l’_l)(m) = g-+a with arbitfary constant
a is a solution of (3.12). Then we have from (2.4) and (3.12)

ARCY V(g ) = nh® 2,y =1), n>1.

On the other hand, the general solutions of the moment equatlons (3. 10)
and (3.11) are

0 =did(z) + dod(z —y+1) and T =dWOH(g y 1)

where d; (i = 1,2, 3) are arbitrary constants. Hence, by Proposmon 3. 2

(3.13)
$a,(h D (2, 7), A (z, 7)) =
(A+B fm=n=0
Ad?+B(y-1+a)*+1 ifm n=1
WO @,y — 1), k02, ~ 1)) £0 ifm=n22
Aa+B(y-1+a) if m = 071-«1 .
0 fms#nm22

since hS "V (2,7) =0, n > 2at z =0 and 7—1 and {h(oo)(a: '7 1)},1_0
is a discrete classical OPS relative to W8+ (g, v — 1) (see Case 1 in
Section 2). Hence (b) of (i) follows immediately from (3.13). ~
Now, let a+08=-2, 0, ¢ Z~, and'ygé Z+U{O}UZ' Then the
equation (3.9) become

(3.14) z(y+a—2)AVy + (B + 1)y~ I)Ay = —n(n — 1)y.

In this case, the equation (3.14) has no polynomial solution of degree 1.
: . ‘0

Case C.2. f5(z) = 22+ (2 (¢ > 0). In this case, the differesce eduation

(1.3) can be written as

(3.15) (2® + ())AVy + (az + b)Ay = n(n+a — 1)y.
Then the corresponding discrete moment equations are |
(3.16) Al(z® + ¢*)o] = (ax + b)o

(3.17) Al + Pl =[(a+2z+a+b+ 1]

The equation (3.16) has no quasi-definite moment functional solution: if
and only if a — 1 € Z~. The equation (3.17) has a quasi-definite moment
functional solution if and only if a+1 ¢ Z~. Hence, there are two cases:
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a=0ora=-1.Ifa=0,b+#0ora= —1, then the difference equation
(3.15) has no polynomial solution of degree 1 or 2, respectively. When
a = b= 0, we have:

THEOREM 3.7. Ifa = b = 0, then difference equation (3.15) always
has a DSOPS {h%(z, ()}, as solutions, which are orthogonal rela-
tive to

$4,5(p,9) = A(0®, pg) + B{o®, pq) + (W®(z,(), ApAg),
if hﬁ""’)(x, ¢) = = + a, where a, A, and B are arbitrary constants with
A#0, A-2A¢%—2B%? +#0, and Aa— B{ = 0. Here, o'V and 0® are
moment functionals defined by
(0®,2" = (()" + (~¢)" and (0®@,2") = [(¢3)" - (=¢)")i,
n>0 (i=v-1)

and W@V (z, ) is the canonical moment functional of the monic discrete
classical OPS {h®"(z, ()}, with (W@ (z,¢),1) = 1.

n=0

Case C.3. {5(z) = z. In this case, the difference equation (1.3) can be
written as

(3.18) zAVy + [a — (1 — p)z]Ay = —n(1 — p)y.
Then the corresponding discrete moment equations are
(3.19) A(zo) = [a— (1 — p)z]o

(3.20) Azr)=[a+p— (1 — p)zjT.

The equation (3.19) has no quasi-definite moment functional solution if
and only if p = 1 or @ = —pun for some n € {0,1,---}. The equation
(3.20) has a quasi-definite moment functional solution if and only if p # 1
and a # —p(n+1) for all n € {0,1,--- }. Hence, there is only one case:
a=0and p#0,1.

THEOREM 3.8. Ifa = 0 and p # 0,1, then the difference equation
(3.18) always has a unique DSOPS {md# )(z)}22, as solutions, which are
orthogonal relative to

$a(p,q) = Ap(0)q(0) + (W) (z), ApAg),

where A is any non-zero constant and W(b¥)(z) is the canonical mo-

ment functional of the monic discrete classical OPS {mg’“ ) ()}, with

(WOH(z), 1) = 1.
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Proofs of Theorem 3.7 and Theorem 3.8 are essentially the same as
that of Theorem 3.6.

Case C.4. fo(z)=1. In thls case, the difference equation (1. 3) can be
written as

(3.21) AVy + (az + b)Ay = —ny.

Then the corresponding discrete moment equations are
(3.22) Ao = (az +b)o

(3.23) At =(az+a+ b)'}‘.

The equation (3.22) has no quasi-definite moment functional solution if
and only if a —1 € Z~. The equation (3.23) has a quwl-deﬁmte ‘moment
functional solution if and only if a ¢ Z~. Hence, there is only one
case: a = 0, for which the difference equation (3.21) has no polynomial
solution of degree 1.
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