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FUNCTION APPROXIMATION OVER TRIANGULAR DOMAIN
USING CONSTRAINED Legendre POLYNOMIALS

YOUNG JOON AHN

ABSTRACT. We present a relation between the orthogonality of the constrained Le-
gendre polynomials over the triangular domain and the BB (Bézier -Bernstein) coef-
ficients of the polynomials using the equivalence of orthogonal complements. Using
it we also show that the best constrained degree reduction of polynomials in BB form
equals the best approximation of weighted Euclidean norm of coefficients of given
polynomial in BB form from the coefficients of polynomials of lower degree in BB
form.

1. INTRODUCTION

Degree reduction of Bézier curves is one of the important problems in CAGD (Com-
puter Aided Geometric Design) or CAD/CAM. In general, degree reduction cannot
be done exactly so that it invokes approximation problems. Thus many efforts and
proposals for dealing with the problems have been made in the recent twenty years
or so. They are classified by different norm in which the distance between polyno-
mials is measured, e.g., in Loo-norm [7, 13, in Ly-norm [15, 16, 17}, in Li-norm [11]
or in Ly-norm [5, 10}, etc. Furthermore, the constrained degree reduction of Bézier
curves with C% !-continuity at both end points is developed in many previous litera-
ture [1, 2, 4, 6, 8, 12, 14, 17, 19, 20].

Recently, Lutterkort et al. [18] showed that the orthogonal complement of a subspace
in the polynomial space of degree n over the triangular domain with respect to the Lo-
inner product and the Euclidean inner product of BB coefficients are equal. Using
this fact they also showed that the best degree reduction of polynomial f of degree
n over the triangular domain in Ly-norm is equivalent to the best approximation of
the vector of BB coefficients of f from all vector of BB coefficients of degree elevated
polynomials of degree less than n in the Euclidean norm of the vector. We follow their
results in the case of constrained degree reduction over the triangular domain. We
first show that the orthogonal complement of a subspace in the constrained polynomial
space of degree n over the triangular domain with respect to La-inner product and the
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weighted Euclidean inner product of BB coefficients are equal for some weights. Using
the fact we also show that the best constrained degree reduction of f of degree n over
the triangular domain in Ly-norm is equal to the best approximation of the vector
of coefficients from all vectors of coefficients of degree elevated polynomials with the
constraint in weighted Euclidean norm of vectors. Finally we present a relation between
the orthogonality of the constrained Legendre polynomials over the triangular domain
and the BB (Bézier -Bernstein) coefficients of the polynomials using the equivalence
of orthogonal complements. The relation plays an important role to construct the
constrained Legendre polynomials in BB form.

The outline of this paper is as follows. In Section 2, we explain the constrained
polynomial space over triangular domain and the constrained Legendre polynomials.
In Section 3, we show that the orthogonal complement of a subspace in the constrained
polynomial space of degree n over triangular domain with respect to Ls-inner product
and the weighted Euclidean inner product of BB coefficients are equal. In Section 4,
we present the properties of the best constrained degree reduction in BB form and the
constrained Legendre polynomials over triangular domain in BB form.

2. CONSTRAINED LEGENDRE POLYNOMIALS OVER TRIANGULAR DOMAIN

In this section we consider the constrained Legendre polynomial of degree n over
triangular domain. Let T be a triangle in the plane, defined by vertices p; = (zk, Yk)
for k = 0,1,2. If these vertices are not collinear, any point p € T can be written
uniquely in terms of barycentric coordinates u,v, w where u +v +w = 1, with respect
to T

P = upg + vp1 + wp2.
Let P, be the linear space of polynomials of degree less than or equal to n. It is conve-
nient to introduce the compact notation a = (a1, az) to denote doubles of nonnegative
integers, and we write |a| = ag + 2. The Bernstein basis of degree n over T is denoted
by

n!

Bl (u,v) = w1y (1 — y — v) (o1, la] < n.

a1!a2!(n — Q1] — 062)!

Thus P, has exactly (n+ 1)(n +2)/2 basis functions. We collect the basis functions in
triangular arrays of size n

B" := [Bgljaj<n
and with b = [ba)jaj<n @ simplicial array of reals we write polynomials in BB form as
B"b= Y Bba.
lal<n

For the nonnegative integer a < n/3, P2 is denoted by the linear space of the con-
strained polynomials of degree less than or equal to m over the triangle T" as follows:

P2 = {B"b €Pp: by =0forac i}
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where I? and J2 are the sets of double index o such that

I = {loJ<n: o124, az20, laf<n-a}
Ju = {le|<n : a¢ I3}

Then P2, has exactly (k+1)(k+2)/2 basis functions, where k = m—3a. Farouki et al.[9]
constructed the basis of linearly independent and mutually orthogonal polynomials
L, say Legendre polynomials, with hierachical ordering in BB form over T'. We also
consider the constrained Legendre polynomials L7, ; with hierachical ordering in BB
form over T. For example a = 1,

1 degree 3 basis functions L},

2 degree 4 basis functions Lj,, Lj,

; ; 1 1
m — 2 degree n basis functions Ly, o, -+ Lp, m_3

We present a relation between the orthogonality of the constrained Legendre polyno-
mials and the BB (Bézier -Bernstein) coefficients of the polynomials in section 4 using
the equivalence of orthogonal complements in section 3.

3. EQUIVALENCE OF ORTHOGONAL COMPLEMENTS

For a < m/3, let
an = {f(u,v) E]P’m:f(i,j)=0fori,j,n—i——j=0,--- 70"']-};

which was also introduced for one variable by Ahn et al. [3]. Note that Pr, = o =QY.
We consider the Lagrange polynomials characterized by

Qa(B) = ba,s |lal, |B] £ n.

Peters and Reif [18] was already introduced the notation of the Lagrange polynomials
Q™. We collect the basis functions in triangular arrays of size n

Qn = [QZ]IaISn
with b = [ba]|a|<n @ simplicial array of reals we write polynomials in Lagrange form as
Qb= Y Quba
la<n

The Lagrange form is used to relate a discrete polynomial dependence of the coefficients
on the array index to a continuous polynomial. For example, if the coefficients by =
(g + ag)ajas(n — @1 — az) depend quintically on the index o, then Q%(u,v)b =
(uv + v)uv(n — u — v) is the corresponding quintic polynomial. The following lemma is
an extension of Lemma 2.1 in Lutterkort et al. [17], Lemma 3.1 in Ahn et al. [3] and
Lemma 2.1 in Peters and Reif [18].
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Lemma 3.1. A polynomial B™b is of degree < m with by = 0 for a € Jg if and only
if the triangular array of coefficients is a polynomial of degree < m with zeros at (1,7),
i,j,n—i—3=0,---,a—1 in its indez, i.e.,

B" e P & Qb e Qf,.
Proof. 1t is well-known [18] that
BheP’ o Qbe Q.
Note that if the coefficients b, depend on the index «, then Q"(u,v)b is also the

corresponding polynomial. Thus b, = 0 for o € J is equivalent to Q™(i,7)b = 0 for
i,jyjn—i—3j=0,---,a— 1. Hence we have B"b € P2, if and only if Q"b € QF,. O

Theorem 3.2. The orthogonal complements of P2, in P% with respect to the Ly-inner
product

(3.1) (fo)L = / /T f(2)9(x)dz

and the weighted Euclidean inner product of the BB coefficients

(3.2) (B", B"c)w = Y baCalla
acls
where (n—lal)
2a1)(2cx2)(2 n—|a
1 oo n—|c_x_| o€ Ia
wa = { Gy (e f)
1 (e € Jp)

are equal.

Proof. Denote the orthogonal complement of P4, in P; with respect to the weighted
Euclidean inner product by P2 and let {B"¢* : m—3a < |a| < n—3a} be some basis

m,n)’
of this space. By equality of dimensions it suffices to show that Py, , is contained in
the orthogonal complement with respect to the Lo-inner product, i.e., the polynomials

B™w® have to be Ly-orthogonal to all polynomials in Pg,,
(B"q®, uttPry@tP2(1 — 4 — v)%) = 0, (0<|B| <m~—3a<|a] <n-—3a)

Defining the triangular array pg by

1
Pl = —-—-// B (u, v)u®TPry P2 (1 — u — v)?dA,
Wo T
clearly we have
(Bnqa’ua+ﬁ1va+ﬂz(1 . v)a)L — <Bn a,B"’Iﬁ)W.

By definition, the latter expression vanishes if and only if B"pf € P2, and by Lemma
3.1, this is equivalent to @Q"p? € Q¢,. In other words, we have to show that pg is a
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polynomial in o of degree < m with zeros at o € J2, for all 8 with |3] < m —3a. Using

the formula !
B" A= —m —————
//T a(u,v)d (n+1)(n+2)

we have
pg = = // B} (u, v)u“+ﬁ‘v“+ﬁ2(1 - u—v)*dA
_ a+f+(e, a)
T . n+|ﬁl+3a // Bn+lﬂ|+3a )dA
a+ﬁ+ (a a)
_r Q) 1
Wo (;:gljrlz;?*a)) (n+ 18] +3a+1)(n+ |6+ 3a+2)
Now,
L))
Wa PwlesolGumin)
_ aaz?(n ~ |a|)1?
(a1 — a)l(a1 + a)l (a2 — a)l(ag + a)l(n = |a| — a)!(n — |a| + a)!
and
(%) _ n! (01 + By + a)l(z + B2 + a)l(n — |a| + a)!
(;jgjjgf;)) (n+ 18] + 3a)! arlagt(n — |al)!
so that
P = n! ay! as! (n—lal)!

(n+ 8]+ 3a+2)! (al—a) (ag ~ a)! (n — |a| — a)!
X(a1+ﬁ1+a)!(a2+ﬁ2+a).

(a; + a)! (ag + a)!
n‘ a a Q&
= - - l - l —lal—a+1
(n+lﬁl+.‘sa+2)!xH(a1 at+h) [z —a+1) [](n—lol )
h=1 Ip=1 l3=1
51 B2
X H(a1+a+7‘1) H(a2+a+7‘2).
ri=1 ro=1
Thus pg is a polynomial of degree < m and pg =0forae Jiie,a;r =0, ,a-1,
ay=0,--,a-landn—laf=0,--- ,a -1 O

In particular, in one dimensional case, i.e., d = 1, the weights are
2 - (2on)! (2(n—a1))! 2
( 0?11) (2(:—511)) _ aTI {n— OZ;‘ — (:1)

We = (2041 )(Z(n—oq)) - (2! 2n-a))! - ( n )( n )

ai—a/ \n—a1—a (a1—a) (a1 +a)! (n—a1—a)!(n—o1—a)! ay—a’/ \a1+a
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which are the same weights given by Ahn. et al. [3].

4. PROPERTIES OF CONSTRAINED LEGENDRE POLYNOMIALS IN BB FORM

Theorem 4.1. Given a polynomial B™b of degree n, the approzimation problem
réll%’n{HB”b —p|:p=B"c€Pp, by =ca foraeli}
pelim

has the same minimizer for the norm induced either by the Ly-inner product (8.1) or
the weighted Euclidean inner product (3.2).

Proof. Let f¢ = B"d € P,, be a polynomial of degree m satisfying
ba = do

for a € J2. Then the polynomial B"b— f* € Py, can be decomposed uniquely according
to

B - f*=p"+¢° p'eEPn, ¢ €,
and, by the orthogonality, p® is the minimizer of
min ||B"b - f* - p®
mip B £ "]

for both norm. For all p = B¢ € P,, satisfying

by = Ca
for a € JZ, we have

|B"b - pll = |B"b - f* = (p— f)Il 2 |B"b — f* = p°|

since p — f¢ € P2, Thus p = p® + f® € Py, is the wanted solution for both norms. [

Corollary 4.2. Denote by Py, ,, the linear operator mapping polynomials B™b € P, to
their best constrained Ly-norm or weighted Euclidean approximant p € P. Then

Pon = PriPin, m< ¢ < n.

For m > 1, consider the space L, of degree-m polynomials that are orthogonal to
all polynomials of degree < m over T

Ly ={peP:pLPL i}

The following theorem is an extension of Lemma 4 in Farouki et al. [9].
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Theorem 4.3. Let p = B"c € P%. Then we have

PELL & ) baCowe=0 forall g=B"beP;_,
acl?

Proof. By definition of £2, p € £2 if and only if p L g for all ¢ € P2_,. It is equivalent

to
// pgdA = 0.
T

By Theorem 3.2, These are equivalent to
Z cabawe = 0.
a€Elg

O

Let f(u,v) be a given C*! function in 7. If q(u,v) is chosen in PP, so that g is the
C% linterpolation of f at the boundaries, and P € P2 satisfies

min / /T ((f(u, v) — qlu, v)) — P(u, v)[2d4,

PePa

then the polynomial q(u,v) — P(u,v) is a constrained n-the degree polynomial ap-
proximation of f(u,v). If the constrained Legendre polynomials are constructed, then
P(u,v) can be simply obtained as

P(u,v) = Z Z riLyi(u,v)

r=0 i=0
with
0. = <L, f—g>
o < Lr,i’ Lr,i >
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