1 |
Behera, D. and Chakraverty, S. (2015), "New approach to solve fully fuzzy system of linear equations using single and double parametric form of fuzzy numbers", Sadhana, 40(1), 35-49.
DOI
|
2 |
Betts, A.K., Helliker, B. and Berry, J. (2004), "Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land", J. Geophys. Res.: Atmosph., 109(D18).
|
3 |
Bhat, R.B. and Chakraverty, S. (2004), Numerical Analysis in Engineering, Alpha Science, Int'l Ltd.
|
4 |
Chakraverty, S., Tapaswini, S. and Behera, D. (2016), Fuzzy Differential Equations and Applications for Engineers and Scientists, CRC Press Taylor and Francis Group, Boca Raton, U.S.A.
|
5 |
Chakraverty, S., Tapaswini, S. and Behera, D. (2016), Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications, John Wiley and Sons.
|
6 |
Dimbylow, P.J. and Wilkinson, P. (1985), "The numerical solution of the diffusion equation describing the flow of radon through cracks in a concrete slab", Radiat. Protect. Dosimetr., 11(4), 229-236.
|
7 |
Dulaiova, H., Camilli, R., Henderson, P.B. and Charette, M.A. (2010), "Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters", J. Environ. Radioact., 101(7), 553-563.
DOI
|
8 |
Escobar, V.G., Tome, F.V. and Lozano, J.C. (1999), "Procedures for the determination of 222 Rn exhalation and effective 226 Ra activity in soil samples", Appl. Radiat. Isotop., 50(6), 1039-1047.
DOI
|
9 |
Alefeld, G. and Herzberger, J. (1983), Introduction to Interval Computations, Academic Press, New York, U.S.A.
|
10 |
Hafez, Y.I. and Awad, E.S. (2016), "Finite element modeling of radon distribution in natural soils of different geophysical regions", Cogen. Phys., 3(1), 1254859.
|
11 |
Hoffmann, T. and Marciniak, A. (2013), "Solving the Poisson equation by an interval difference method of the second order", Computat. Meth. Sci. Technol., 19(1), 13-21.
DOI
|
12 |
Nickel, K.L. (1986), "Using interval methods for the numerical solution of ODE's", J. Appl. Math. Mech., 66(11), 513-523.
|
13 |
Kozak, J.A., Reeves, H.W. and Lewis, B.A. (2003), "Modeling radium and radon transport through soil and vegetation", J. Contamin. Hydrol., 66(3), 179-200.
DOI
|
14 |
Moore, R.E., Kearfott, R.B. and Cloud, M.J. (2009), Introduction to Interval Analysis, Society for Industrial and Applied Mathematics.
|
15 |
Nazaroff, W.W. (1992), "Radon transport from soil to air. Reviews of geophysics", 30(2), 137-160.
DOI
|
16 |
Ren, T. (2001), "Source, level and control of indoor radon", Radiat. Prot., 21(5), 291-297.
|
17 |
Rodriguez, J. (1992), "Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions", J. Different. Equat., 97(1), 112-126.
DOI
|
18 |
Stefanini, L. and Bede, B. (2009). "Generalized hukuhara differentiability of interval-valued functions and interval differential equations", Nonlin. Analy. Theor. Meth. Appl., 71(3), 1311-1328.
DOI
|
19 |
Savovic, S., Djordjevich and Ristic, G. (2011), "Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings", Radiat. Protect. Dosimetr., 150(2), 213-16.
DOI
|
20 |
Schery, S.D., Holford, D.J., Wilson, J.L. and Phillips, F.M. (1988). "The flow and Diffusion of radon isotopes in fractured porous media part 2, semi-infinite media", Radiat. Protect. Dosimetr., 24(1-4), 191-197.
DOI
|
21 |
Tapaswini, S. and Chakraverty, S. (2013), "Numerical solution of uncertain beam equations using double parametric form of fuzzy numbers", Appl. Comput. Intellig. Soft Comput., 13.
|
22 |
Tapaswini, S. and Chakraverty, S. (2014), New Midpoint-based Approach for the Solution of n-th Order Interval Differential Equations.
|
23 |
Tapaswini, S., Chakraverty, S. and Allahviranloo, T. (2017), "A new approach to nth order fuzzy differential equations", Comput. Math. Model., 28(2), 278-300.
DOI
|
24 |
Van Der Spoel, W.H., Van Der Graaf, E.R. and De Meijer, R.J. (1998), "Combined diffusive and advective transport of radon in a homogeneous column of dry sand", Health Phys., 74(1), 48-63.
DOI
|
25 |
Wrenn, M.E., Rosen, J.C. and Pelt, W.R. (1969), "Steady state solutions for the diffusion equations of radon-222 daughters", Health phys., 16(5), 647-656.
DOI
|