• Title/Summary/Keyword: organic-inorganic hybrid material

Search Result 102, Processing Time 0.026 seconds

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan;Li, San Xi;Han, Chong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3196-3202
    • /
    • 2012
  • Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

Characteristics of Organic Thin Film Transistors with Organic and Organic-inorganic Hybrid Polymer Gate Dielectric (유기물과 유무기 혼합 폴리머 게이트 절연체를 사용한 유기 박막 트랜지스터의 특성)

  • Bae, In-Seob;Lim, Ha-Young;Cho, Su-Heon;Moon, Song-Hee;Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this study, we have been synthesized the dielectric layer using pure organic and organic-inorganic hybrid precursor on flexible substrate for improving of the organic thin film transistors (OTFTs) and, design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors with pentacene as the active layer with record device performance. In this work OTFT test structures fabricated on polymerized substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of organic materials and their transistors. By an adhesion development between gate metal and PI substrate, a PI film was treated using $O_2$ and $N_2$ gas. The best peel strength of PI film is 109.07 gf/mm. Also, we have studied the electric characteristics of pentacene field-effect transistors with the polymer gate-dielectrics such as cyclohexane and hybrid (cyclohexane+TEOS). The transistors with cyclohexane gate-dielectric has higher field-effect mobility, $\mu_{FET}=0.84\;cm^2/v_s$, and smaller threshold voltage, $V_T=-6.8\;V$, compared with the transistor with hybrid gate-dielectric.

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

Solution-processible Inorganic-organic Hybrid Bipolar Field Effect Transistors

  • Chae, Gil Jo;Walker, Bright;Kim, Kang Dae;Cho, Shinuk;Seo, Jung Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.391.2-391.2
    • /
    • 2014
  • Solution-processible hybrid bipolar field effect transistors (HBFETs) with balanced hole and electron mobilities were fabricated using a combination of the organic p-type poly (3-hexylthiophene) (P3HT) layer and inorganic n-type ZnO material. The hole and electron mobilities were first optimized in single layer devices by using acetonitrile as a solvent additive to process the P3HT and annealing to process the ZnO layer. The highest hole mobility of the P3HT-only-devices with 5% acetonitrile was 0.15 cm2V-1s-1, while the largest electron mobility was observed in the ZnO-only-devices annealed at $200^{\circ}C$ and found to be $7.2{\times}10-2cm2V-1s-1$. The inorganic-organic HBFETs consisting of P3HT with 5% acetonitrile and ZnO layer annealed at $200^{\circ}C$ exhibited balanced hole and electron mobilities of $4.0{\times}10-2$ and $3.9{\times}10-2cm2V-1s-1$, respectively. The effect on surface morphology and crystallinity by adding acetonitrile and thermal annealing were investigated through X-ray diffraction and atomic force microscopy (AFM). Our findings indicate that techniques demonstrated herein are of great utility in improving the performance of inorganic-organic hybrid devices

  • PDF

Development of Organic-Inorganic Hybrid Insulating Materials with Semi-Non-Combustible Using by Recycling Gypsum (재활용 석고 부산물을 이용한 준불연 유무기 융합 단열재 개발 연구)

  • Ha, Joo-Yeon;Shin, Hyun-Gyoo;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.431-437
    • /
    • 2019
  • The purpose of this study is to develop an organic-inorganic hybrid insulation materials which has an economic feasibility of organic level and excellent adiabatic performance and fire stability by impregnating organic materials with inorganic binder solutions. The organic base was commercial polyurethane sponge, and the inorganic binder slurry was prepared by mixing water and additives into recycled gypsum byproducts. As a result of evaluation of the developed materials, it was confirmed that it not only has excellent insulation performance of a thermal conductivity of 0.051 W/mK or less but also it is a semi-non-combustible materials specified in the Ministry of Land, Infrastructure and Transport Notice No. 2015-744. The developed materials can also be controlled for thermal conductivity and flame retardance according to density control during manufacturing process, and thus it can be applied to various insulation materials.

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Organic-inorganic Hybrid Dielectric with UV Patterning and UV Curing for Global Interconnect Applications (글로벌 배선 적용을 위한 UV 패턴성과 UV 경화성을 가진 폴리실록산)

  • Song, Changmin;Park, Haesung;Seo, Hankyeol;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • As the performance and density of IC (integrated circuit) devices increase, power and signal integrities in the global interconnects of advanced packaging technologies are becoming more difficult. Thus, the global interconnect technologies should be designed to accommodate increased input/output (I/O) counts, improved power grid network integrity, reduced RC delay, and improved electrical crosstalk stability. This requirement resulted in the fine-pitch interconnects with a low-k dielectric in 3D packaging or wafer level packaging structure. This paper reviews an organic-inorganic hybrid material as a potential dielectric candidate for the global interconnects. An organic-inorganic hybrid material called polysiloxane can provide spin process without high temperature curing, an excellent dielectric constant, and good mechanical properties.

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.