References
- Ahn, W.S. (2012). Effects of GTR and unexpanded expancel powders on thermal conducting characteristics of rigid polyurethane foams, Journal of the Korean Academia-Industrial Cooperation Society, 13(6), 2846-2851 [in Korean]. https://doi.org/10.5762/KAIS.2012.13.6.2846
- Barea, R., Osendi, M.I., Ferreira, J.M.F., Miranzo, P. (2005). Thermal conductivity of highly porous mullite material, Acta Materialia, 53(11), 3313-3318. https://doi.org/10.1016/j.actamat.2005.03.040
- Hu, F., Wu, S., Sun, Y. (2018). Hollow‐structured materials for thermal insulation, Advanced Materials, 31(38), 1801001. https://doi.org/10.1002/adma.201801001
- Leisted, R.R., Sorensen, M.X., Jomaas, G. (2017). Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure, Fire Safety Journal, 93, 114-125. https://doi.org/10.1016/j.firesaf.2017.09.004
- Li, Y., Liu, X., Nie, X., Yang, W., Wang, Y., Yu, R., Shui, J. (2019). Multifunctional organic-inorganic hybrid aerogel for self-cleaning, Heat-Insulating, and Highly Efficient Microwave Absorbing Material, Advanced Functional Materials, 29(10), 1807624. https://doi.org/10.1002/adfm.201807624
- Loeb, A.L. (1954). Thermal conductivity: VIII, a theory of thermal conductivity of porous materials, Journal of the American Ceramic Society, 37(2), 96-99. https://doi.org/10.1111/j.1551-2916.1954.tb20107.x
- Ng, S., Jelle, B.P., Sandberg, L.I., Gao, T., Mofid, S.A. (2018). Hollow silica nanospheres as thermal insulation materials for construction: Impact of their morphologies as a function of synthesis pathways and starting materials, Construction and Building Materials, 166(30), 72-80. https://doi.org/10.1016/j.conbuildmat.2018.01.054
- Noh, H.K., Song, H., Chu, Y.S., Park, J.S., Lee, J.K. (2012). Evaluation of an organic-inorganic hybrid insulation material using an inorganic filler and polyurethane with a foaming condition, Journal of the Korean Ceramic Society, 49(6), 654-658 [in Korean]. https://doi.org/10.4191/kcers.2012.49.6.654
- Viel, M., Collet, F., Lanos, C. (2019). Development and characterization of thermal insulation materials from renewable resources, Construction and Building Materials, 214, 685-697. https://doi.org/10.1016/j.conbuildmat.2019.04.139
- Villasmil, W., Fischer, L.J., Worlitschek, J. (2019). A review and evaluation of thermal insulation materials and methods for thermal energy storage systems, Renewable and Sustainable Energy Reviews, 103, 71-84. https://doi.org/10.1016/j.rser.2018.12.040
- Yang, H., Jiang, Y., Liu, H., Xie, D., Wan, C., Pan, H., Jiang, S. (2018). Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin, Journal of Colloid and Interface Science, 530(15), 163-170. https://doi.org/10.1016/j.jcis.2018.06.075
- Yang, T.Y., Kim, W.Y., Yoon, S.Y., Park, H.C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method, Journal of Physics and Chemistry, 71(4), 436-439.
- Yu, Z.L., Yang, N., Kalkavoura, V.A., Qin, B., Ma, Z.Y., Xing, W.Y., Qiao, C., Bergstrom, L., Antonietti, M., Yu, S.H. (2018). Fire‐retardant and thermally insulating phenolic‐silica aerogels, Angewandte Chemie, 57(17), 4538-4542. https://doi.org/10.1002/anie.201711717