DOI QR코드

DOI QR Code

Development of Organic-Inorganic Hybrid Insulating Materials with Semi-Non-Combustible Using by Recycling Gypsum

재활용 석고 부산물을 이용한 준불연 유무기 융합 단열재 개발 연구

  • 하주연 (한국산업기술시험원 재료기술센터) ;
  • 신현규 (한국산업기술시험원 재료기술센터) ;
  • 송태협 (한국건설기술연구원 연구전략기획본부)
  • Received : 2019.11.15
  • Accepted : 2019.12.20
  • Published : 2019.12.30

Abstract

The purpose of this study is to develop an organic-inorganic hybrid insulation materials which has an economic feasibility of organic level and excellent adiabatic performance and fire stability by impregnating organic materials with inorganic binder solutions. The organic base was commercial polyurethane sponge, and the inorganic binder slurry was prepared by mixing water and additives into recycled gypsum byproducts. As a result of evaluation of the developed materials, it was confirmed that it not only has excellent insulation performance of a thermal conductivity of 0.051 W/mK or less but also it is a semi-non-combustible materials specified in the Ministry of Land, Infrastructure and Transport Notice No. 2015-744. The developed materials can also be controlled for thermal conductivity and flame retardance according to density control during manufacturing process, and thus it can be applied to various insulation materials.

본 연구는 유기계 기재에 무기계 바인더 소재를 함침시킴으로써 유기계 수준의 경제성을 가지며 우수한 단열성능 및 화재 안전성을 보유한 유무기 융합형 단열재 개발을 목적으로 한다. 유기계 기재는 폴리우레탄 소재의 상용 스펀지를 사용하였고, 함침용 무기 바인더 용액은 재활용 석고 부산물에 물과 첨가제를 혼합하여 제조하였다. 개발 소재의 성능평가 결과 열전도율 0.051W/mK 이하의 우수한 단열성능 뿐만 아니라 국토교통부 고시 제 2015-744호 기준에 명시된 준불연 재료임을 확인할 수 있었다. 또한 본 개발 소재는 제조 공정 과정에서 밀도 제어에 따른 열전도율 및 난연성 조절이 가능하여 다양한 용도의 단열재에 적용 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, W.S. (2012). Effects of GTR and unexpanded expancel powders on thermal conducting characteristics of rigid polyurethane foams, Journal of the Korean Academia-Industrial Cooperation Society, 13(6), 2846-2851 [in Korean]. https://doi.org/10.5762/KAIS.2012.13.6.2846
  2. Barea, R., Osendi, M.I., Ferreira, J.M.F., Miranzo, P. (2005). Thermal conductivity of highly porous mullite material, Acta Materialia, 53(11), 3313-3318. https://doi.org/10.1016/j.actamat.2005.03.040
  3. Hu, F., Wu, S., Sun, Y. (2018). Hollow‐structured materials for thermal insulation, Advanced Materials, 31(38), 1801001. https://doi.org/10.1002/adma.201801001
  4. Leisted, R.R., Sorensen, M.X., Jomaas, G. (2017). Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure, Fire Safety Journal, 93, 114-125. https://doi.org/10.1016/j.firesaf.2017.09.004
  5. Li, Y., Liu, X., Nie, X., Yang, W., Wang, Y., Yu, R., Shui, J. (2019). Multifunctional organic-inorganic hybrid aerogel for self-cleaning, Heat-Insulating, and Highly Efficient Microwave Absorbing Material, Advanced Functional Materials, 29(10), 1807624. https://doi.org/10.1002/adfm.201807624
  6. Loeb, A.L. (1954). Thermal conductivity: VIII, a theory of thermal conductivity of porous materials, Journal of the American Ceramic Society, 37(2), 96-99. https://doi.org/10.1111/j.1551-2916.1954.tb20107.x
  7. Ng, S., Jelle, B.P., Sandberg, L.I., Gao, T., Mofid, S.A. (2018). Hollow silica nanospheres as thermal insulation materials for construction: Impact of their morphologies as a function of synthesis pathways and starting materials, Construction and Building Materials, 166(30), 72-80. https://doi.org/10.1016/j.conbuildmat.2018.01.054
  8. Noh, H.K., Song, H., Chu, Y.S., Park, J.S., Lee, J.K. (2012). Evaluation of an organic-inorganic hybrid insulation material using an inorganic filler and polyurethane with a foaming condition, Journal of the Korean Ceramic Society, 49(6), 654-658 [in Korean]. https://doi.org/10.4191/kcers.2012.49.6.654
  9. Viel, M., Collet, F., Lanos, C. (2019). Development and characterization of thermal insulation materials from renewable resources, Construction and Building Materials, 214, 685-697. https://doi.org/10.1016/j.conbuildmat.2019.04.139
  10. Villasmil, W., Fischer, L.J., Worlitschek, J. (2019). A review and evaluation of thermal insulation materials and methods for thermal energy storage systems, Renewable and Sustainable Energy Reviews, 103, 71-84. https://doi.org/10.1016/j.rser.2018.12.040
  11. Yang, H., Jiang, Y., Liu, H., Xie, D., Wan, C., Pan, H., Jiang, S. (2018). Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin, Journal of Colloid and Interface Science, 530(15), 163-170. https://doi.org/10.1016/j.jcis.2018.06.075
  12. Yang, T.Y., Kim, W.Y., Yoon, S.Y., Park, H.C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method, Journal of Physics and Chemistry, 71(4), 436-439.
  13. Yu, Z.L., Yang, N., Kalkavoura, V.A., Qin, B., Ma, Z.Y., Xing, W.Y., Qiao, C., Bergstrom, L., Antonietti, M., Yu, S.H. (2018). Fire‐retardant and thermally insulating phenolic‐silica aerogels, Angewandte Chemie, 57(17), 4538-4542. https://doi.org/10.1002/anie.201711717