DOI QR코드

DOI QR Code

Organic-inorganic Hybrid Dielectric with UV Patterning and UV Curing for Global Interconnect Applications

글로벌 배선 적용을 위한 UV 패턴성과 UV 경화성을 가진 폴리실록산

  • Song, Changmin (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Park, Haesung (Department of Mechanical Engineering, Seoul National University of Science and Technology) ;
  • Seo, Hankyeol (Media IT Engineering Program, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
  • 송창민 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 박해성 (서울과학기술대학교 일반대학원 기계공학과) ;
  • 서한결 (서울과학기술대학교 정보통신대학 전자IT미디어공학과) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2018.10.30
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

As the performance and density of IC (integrated circuit) devices increase, power and signal integrities in the global interconnects of advanced packaging technologies are becoming more difficult. Thus, the global interconnect technologies should be designed to accommodate increased input/output (I/O) counts, improved power grid network integrity, reduced RC delay, and improved electrical crosstalk stability. This requirement resulted in the fine-pitch interconnects with a low-k dielectric in 3D packaging or wafer level packaging structure. This paper reviews an organic-inorganic hybrid material as a potential dielectric candidate for the global interconnects. An organic-inorganic hybrid material called polysiloxane can provide spin process without high temperature curing, an excellent dielectric constant, and good mechanical properties.

Keywords

MOKRBW_2018_v25n4_1_f0001.png 이미지

Fig. 1. Schematic diagrams of device structures.

MOKRBW_2018_v25n4_1_f0002.png 이미지

Fig. 2. RC Delay Trends for transistor and interconnect.

MOKRBW_2018_v25n4_1_f0003.png 이미지

Fig. 3. Schematic diagram of organic-inorganic material structure.

MOKRBW_2018_v25n4_1_f0004.png 이미지

Fig. 4. Example of patterning characteristic of polysiloxane (SEM images).

Table 1. List of dielectrics.7-11)

MOKRBW_2018_v25n4_1_t0001.png 이미지

Table 2. Material properties of selected organic-based dielectrics.16)

MOKRBW_2018_v25n4_1_t0002.png 이미지

References

  1. S. E. Thompson, and S. Parthasarathy, "Moore's law: the future of Si microelectronics", Mater Today, 9(6), 20 (2006).
  2. K. C. Saraswat, and F. Mohammadi, "Effect of scaling of interconnections on the time delay of VLSI circuits", IEEE Trans. on Electron Dev., 29(4), 645 (1982). https://doi.org/10.1109/T-ED.1982.20757
  3. M. T. Bohr, and Y. A. El-Mansy, "Technology for advanced high-performance microprocessors", IEEE Trans. on Electron Dev., 45(3), 620 (1998). https://doi.org/10.1109/16.661223
  4. A. A. Vyas, C. Zhou, and C. Y. Yang, "On-Chip Interconnect Conductor Materials for End-of-Roadmap Technology Nodes", IEEE Transactions on Nanotechnology, 17(1), 4 (2018). https://doi.org/10.1109/TNANO.2016.2635583
  5. T. Ohba, "A study of current multilevel interconnect technologies for 90nm nodes and beyond", Fujitsu Sci. Tech. J., 38(1), 13 (2002).
  6. S. E. Kim, "Bumpless Interconnect System for Fine-pitch Devices", J. Microelectron. Packag. Soc., 21(3), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.3.001
  7. D. Shamiryan, T. Abel, F. Iacopi, and K. Maex, "Low K dielectric materials", Mater. Today, 7(1), 34 (2004). https://doi.org/10.1016/S1369-7021(04)00053-7
  8. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya, "Low dielectric constant materials for microelectronics", J. Appl. Phys., 93(11), 8793 (2003). https://doi.org/10.1063/1.1567460
  9. J. Gambino, F. Chen, and J. He, "Copper interconnect technology for the 32nm node and beyond", Proc. IEEE Custom Integrated Circuits Conference, San Jose, 141 (2009).
  10. M. Morgen, E. T. Ryan, J. Zhao, C. Hu, T. Cho, and P. S. Ho, "Low dielectric constant materials for ULSI interconnects", Annu. Rev. Mater. Sci., 30(1), 645 (2000). https://doi.org/10.1146/annurev.matsci.30.1.645
  11. M. Topper, T. Fischer, T. Baumgartner, and H. Reichl, "A Comparison of Thin Film Polymers for Wafer Level Packaging", Proc. IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, 769 (2010).
  12. X. Fan, "Wafer Level Packaging (WLP): Fan-in, Fan-out and Three-Dimensional Integration", Proc. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, Bordeaux, EuroSimE (2010).
  13. X. J. Fan, B. Varia, and Q. Han, "Design and optimization of thermo-mechanical reliability in wafer level packaging", Microelectronics Reliability, 50(4), 536 (2010). https://doi.org/10.1016/j.microrel.2009.11.010
  14. T. Meyer, G. Ofner, S. Bradl, M. Brunnbauer, and R. Hagen, "Embedded Wafer Level Ball Grid Array (eWLB)", IEEE EPTC, Singapore, 994 (2008).
  15. J. H. Lau, M. Li, M. L. Qingqian, T. Chen, I. Xu, Q. X. Yong, Z. Cheng, N. Fan, E. Kuah, Z. Li, K. H. Tan, Y. Cheung, E. Ng, P. Lo, W. Kai, J. Hao, K. S. Wee, J. Ran, C. Xi, R. Beica, S. P. Lim, N. C. Lee, C. Ko, H. Yang, Y. Chen, M. Tao, J. Lo, and R. S. W. Lee, "Fan-Out Wafer-Level Packaging for Heterogeneous Integration", IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(9), 1544 (2018). https://doi.org/10.1109/TCPMT.2018.2848649
  16. M. Topper, T. Fischer, T. Baumgartner, and H. Reichl, "Comparison of Thin Film Polymers for Wafer Level Packaging", Proc. IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, 769 (2010).
  17. L. Shi, L. Chen, D. W. Zhang, E. Liu, and J. Huang, "Investigation on solder bump process polyimide cracking for wafer level packaging", Proc. IEEE International Conference on Electronic Packaging Technology (ICEPT), China, 1140 (2016).
  18. S. S. Boon, K. J. Chui, S. W. D. Ho, S. A. Sek, M. Yu, P. Lianto, Y. Gu, G. H. See, and M. L. Bernt, "Evaluation on multiple layer PBO-based Cu RDL process for Fan-Out Wafer Level Packaging (FOWLP)", Proc. IEEE Electronics Packaging Technology Conference (EPTC), Singapore, 662 (2016).
  19. M. Nishimura, D. Matsukawa, N. Matsuie, N. Yamazaki, T. Enomoto, and M. Ohe, "Reliability of 200oC curable photodefinable PBO for re-distribution layer in WLP", Proc. IEEE CPMT Symposium Japan (ICSJ), Koyto, 197 (2016).
  20. A. Tanimoto, Y. Aoki, M. Kimura, S. Lee, T. Komine, Y. Okada, and M. Sasaki, "Development of Positive-tone Photodefinable Material for Redistribution Layer", J. Photopolym. Sci. Technol., 30(2), 231 (2017). https://doi.org/10.2494/photopolymer.30.231
  21. Y. S. Chan, S. W. R. Lee, F. Song, C. C. J. Lo, and T. Jiang, "Effect of UBM and BCB layers on the thermo-mechanical reliability of wafer level chip scale package (WLCSP)", Proc. 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taiwan, 407 (2009).
  22. P. Judeinstein, and C. Sanchez, "Hybrid organic-inorganic materials: a land of multidisciplinarity", J. Muter. Chem., 6(4), 511 (1996). https://doi.org/10.1039/JM9960600511
  23. E. Ayandele, B. Sarkar, and P. Alexandridi, "Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites", Nanomaterials, 2(4), 445 (2012). https://doi.org/10.3390/nano2040445
  24. S. S, Hwang, K. Baek, S. S. Choi, H. S. Lee, and D. Y. Oh, "Polysilsesquioxane (in Kor.)", Polymer Science and Technology, 20(2), 135 (2009).
  25. K. B. Yoon, and D. H. Lee, "Synthesis and characteristics of POSS polymers", Polymer Science and Technology, 16(6), 833 (2005).
  26. H. M. Lin, K. H. Hseih, and F. C. Chang, "Characterization of negative-type photoresists containing polyhedral oligomeric silsesquioxane methacrylate", Microelectron. Eng., 85(7), 1624 (2008). https://doi.org/10.1016/j.mee.2008.03.012
  27. N. Fritz, R. Saha, S. A. B. Allen, and P. A. Kohl, "Photodefinable Epoxycyclohexyl Polyhedral Oligomeric Silsesquioxane", J. Electronic Materials, 39(2), 149 (2010). https://doi.org/10.1007/s11664-009-1031-9
  28. D. Kessler, and P. Theato, "Synthesis of Functional Inorganic-Organic Hybrid Polymers Based on Poly(silsesquioxanes) and Their Thin Film Properties", Macromolecules, 41(14), 5237 (2008). https://doi.org/10.1021/ma800570x
  29. D. Kessler, P. J. Roth, and P. Theato, "Reactive Surface Coatings Based on Polysilsesquioxanes: Controlled Functionalization for Specific Protein Immobilization", Langmuir, 25(17), 10068 (2009). https://doi.org/10.1021/la901878h
  30. W. Chen, F. Qi, C. Li, J. Cao, Z. Li, J. Dou, Y. Bei, J. Zhan, and Q. Zhu, "Functionalized polysilsesquioxane film fluorescent sensors for sensitive detection of polychlorinated biphenyls", Journal of Organometallic Chemistry, 749, 296 (2014). https://doi.org/10.1016/j.jorganchem.2013.10.028
  31. D. Cordes, P. Lickiss, and F. rataboul, "Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes", Chem. Rev., 110(4), 2081 (2010). https://doi.org/10.1021/cr900201r
  32. K. Tanaka, and Y. Chujo, "Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS)", J. Mater. Chem., 22(5), 1733 (2012). https://doi.org/10.1039/C1JM14231C
  33. R. Tamaki, Y. Chujo, K. Kuraoka, and T. Yazawa, "Application of organic-inorganic polymer hybrids as selective gas permeation membranes", J. Mater. Chem., 8, 1741 (1999).
  34. T. Ogoshi, and Y. Chujo, "Synthesis of Photosensitive Organic-Inorganic Polymer Hybrids by Utilizing Caged Photoactivatable Alkoxysilane", Macromolecules, 37, 5916 (2004). https://doi.org/10.1021/ma0400057
  35. M. Morita, A. Tanaka, and K. Onose, "Methacrylated silicone-based negative photoresist for high resolution bilayer resist systems", J. Vac. Sci. Technol. B: Microelectronics Processing and Phenomena 4(1), 414 (1998). https://doi.org/10.1116/1.583345
  36. K. Kim, D. Keum, and Y. Chujo, "Organic-Inorganic Polymer Hybrids Using Polyoxazoline Initiated by Functionalized Silsesquioxane", Macromolecules, 6, 867 (2003).
  37. C.-L. Chiang, and C.-C. M. Ma, "Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol-gel method", European Polymer Journal, 38(11), 2219 (2002). https://doi.org/10.1016/S0014-3057(02)00123-4
  38. C.-L. Chiang, and R.-C. Chang, "Synthesis, characterization, and thermal properties of bridged polysilsesquioxanes-molecular nanocomposites", ECCM, 13, 1 (2008).
  39. G. Cerveau, R. J. P. Corriu, and E. Framery, "Sol-gel process-influence of ageing on the textural properties of organosilsesquioxane materials", J. Mater. Chem., 11(3), 713 (2001). https://doi.org/10.1039/b008362n
  40. G. Cerveau, R. J. P. Corriu, and E. Framery, "Influence of the nature of the catalyst on the textural properties of organosilsesquioxane materials", Polyhedron, 19(3), 307 (2000). https://doi.org/10.1016/S0277-5387(99)00360-5
  41. S. Sankaraiah, J. M. Lee, J. H. Kim, and S. W. Choi, "Preparation and Characterization of Surface-Functionalized Polysilsesquioxane Hard Spheres in Aqueous Medium", Macromolecules, 41(16), 6195 (2008). https://doi.org/10.1021/ma8003345
  42. A. Dabrowski, M. Barczak, E. Robens, N.V. Stolyarchuk, G. R. Yurchenko, O. K. Matkovskii, and Y. L. Zub, "Ethylene and phenylene bridged polysilsesquioxanes functionalized by amine and thiol groups as adsorbents of volatile organic compounds", Applied Surface Science, 253(13), 5747 (2007). https://doi.org/10.1016/j.apsusc.2006.12.104
  43. R. Puyenbroek, J. C. van de Grampel, B. A. C. Rousseeuvv, and E. W. J. M. van der Drift, "Functionalization of polysilsesquioxanes", Polymer, 35(14), 3131 (1994). https://doi.org/10.1016/0032-3861(94)90432-4
  44. D. W. Scott, "Thermal Rearrangement of Branche d-C hain Me thylpoly siloxanes", J. Am. Chem. Soc., 68, 356 (1946). https://doi.org/10.1021/ja01207a003
  45. J. F. Brown, L. H. Vogt, A. Katchman, J. W. Eustance, K. M. Kiser, and K. W. Karntz, "Double chain polymers of phenylsilsesquioxane", J. Am. Chem. Soc., 82, 6194 (1960). https://doi.org/10.1021/ja01508a054
  46. A. S. S. Lee, Y. Y. Jo, Y. M. Choi, B. Kim, K. Baek, and S. S. Hwang, "Functional Silsesquioxane Coating Materials", Polymer Science and Technology, 27(4), 287 (2016).