• Title/Summary/Keyword: organic substance

Search Result 318, Processing Time 0.025 seconds

The Distribution of DOM and POM and the Composition of Stable Carbon Isotopes in Streams of Agricultural and Forest Watershed Located in the Han River System (한강수계 농경지역 하천과 삼림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비)

  • Kim, Jai-Ku;Kim, Bom-Chul;Jung, Sung-Min;Jang, Chang-Won;Shin, Myoung-Sun;Lee, Yun-Kyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The runoff characteristics of organic matter in turbid water were investigated in eleven tributary streams of the Han River system, Korea. The flow-weighted event mean concentrations of organic matter ranged from 1.5 to 3.2 mg $L^{-1}$ of DOM and 2.2 of 29.1 mg $L^{-1}$ of POM, respectively. The SUVA value which reflects the proportion of humic substance in organic matters was higher during the rainfall season, meaning that the runoff of refractory form increase in this period. Stable carbon isotope ratios of both POM and DOM were different among streams, which reflect the sources of organic matter. DOM isotope ratios were less depleted of $^{13}C$ than that of POM by approximately 1 to $2%_{\circ}$ ${\delta}^{13}C$ of the several turbid streams (the Mandae Stream, the Jawoon Stream, and the Daegi stream) were heavier than those of clear streams. ${\delta}^{13}C$ values in the turbid upstream tributaries were similar to those of downstream reaches (such as the Soyang River, the Sum River, and the Seo River). From the ${\delta}^{13}C$ analysis of POM it could be calculated that $C_4$ pathway contributed approximately 15.9 to 23.6% of organic matter in several turbid upstream sites, and over 20% in the three sites of large downstream reaches. On the contrary it contributed only 9.1 to 12.8% in clear streams of forest watersheds. In the Soyang River, $C_4$ pathway organic matter contributed 8.8% of the DOM pool.

Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables

  • Jun-Yeong Lee;Yun-Gu Kang;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.967-976
    • /
    • 2023
  • Biochar is emerging as a promising substance for achieving carbon neutrality and climate change mitigation. It can absorb several nutrients via ion bonding on its surface functional groups, resulting in slow dissociation of the bonds. Biochar, like organic fertilizers, contributes to sustainable nutrient management. The purpose of this study was to investigate the effects of nutrient-coated biochar amendments on leafy vegetables production and soil fertility. The nutrient-coated biochar was produced by soaking rice husk biochar in a nutrient solution containing nitrogen (N), phosphorus, and potassium for 24 hours. Nutrient-coated biochar and organic fertilizers were applied to soil at a rate of 120 kg·N·ha-1. The growth components of the leafy vegetables showed that nutrient-coated biochar led to the highest fresh weight (FW) of both lettuce and kale (i.e., 146.67 and 93.54 g·plant-1 FW, respectively). As a result, nutrient-coated biochar amendments led to superior yield compared to the control treatment and organic fertilization. The elemental composition of leafy vegetables revealed that soil amended with nutrient-coated biochar resulted in higher nutrient contents, which was attributed to the high nutrient contents supplied by the rice husk biochar. Soil amendment with nutrient-coated biochar positively enhanced the soil fertility compared to amendment with organic fertilizer. Therefore, nutrient-coated biochar is a promising substance for enhancing agronomic performance of leafy vegetables and improving soil fertility.

Adsorption of Trichloroethylene in Water by Coconut Carbon and Coconut Activated Carbon (야자껍질 탄화탄과 야자껍질 활성탄에 의한 수중 Trichloroethylene의 흡착에 관한 연구)

  • 김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.25-32
    • /
    • 1993
  • Granular activated carbon is commonly used in fixed-bed adsorbers to remove organic chemicals. In this experiment organic chemical solutions were prepared by adding the reagent grade organic chemical to distilled water. Isotherm adsorption tests of volatile organic chemicals were conducted using bottle-point technique and column test. Organic chemicals after passing through the column were extracted with hexane and analyzed with gas chromatography (Hewlett-Packard 5890) to check the adsorption capacity and breakthrough curve. The result were as follows: 1. The BET surface area of coconut activated carbon was 658~1,010 m$^2$/g where as coconut shell carbon was 6.6 m$^2$/g. Coconut activated carbon increased the BET surface area and adsorption capacity in bottle-point isotherm. 2. The adsorption capacity of coconut activated carbon for trichloroethylene (TCE) was reduced in the presence of humic substance. 3. A decrease in particle size of activated carbon resulted in higher adsorption capacity and lower intraparticle diffusion coefficient. It is reflected not only as a decrease in Freudlich adsorption capacity value (K) but also as an increase in Freudlich exponenent value (1/n).

  • PDF

Effect of Culture Parameters on the Production of Growth Inhibitory Substance of Colletotrichum gloeosporioides from Bacillus subtilis (Bacillus subtilis에서 분비되는 Colletotrichum gloeosporioides 생장 저해물질 생산에 미치는 배양조건의 영향)

  • Cho, Soo-Jin;Cha, Byeong-Jin;Shin, Kwang-Soo
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.138-141
    • /
    • 2004
  • The effect of culture parameters on the production of Colletotrichum gloeosporioides growth inhibitory substance from Bacillus subtilis was investigated. The maximal growth inhibition zone was observed in the medium of pH 7.0. Among the tested carbon sources, glucose showed the largest growth inhibition zone above two fold than other carbon sources. Ammonium sulfate and organic nitrogen sources were effective on the production of growth inhibitory substance. Luria Bertani (LB) medium was the best on the production of antifungal substance from B. subtilis.

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.

Antimicrobial Activities of (-)Epicatechin from Ulmus davidiana var. japonica Cortex

  • Lee, Gyu-Hee;Shim, Chang-Ju;Chang, Yeong-Il;Park, Seong-Hyun;Oh, Hong-Rock;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.230-234
    • /
    • 2001
  • The extract of Ulmus davidiana var. japonica cortex has known as natural anti-inflammatory substance in East Asia. For the identification of antimicrobial substance, it was extracted by using methanol and fractionated by using different organic solvents. The fraction of butanol was represented the highest antimicrobial activities. Therefore, the butanol fraction was purified and identified the chemical structure by $^1$H and $^{13}$ C-NMR spectra, FT-IR and EI/MS spectroscopies. The isolated antimicrobial substance was identified as cis-2-[3,4-dihydroxy phenyl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol, which has commonly known as (-)epicatechin. Its minimum inhibitory concentrations (MICs) against Staphylococcus aureus and Listeria monocytogenes were shown as 100 $\mu\textrm{g}$/mL, respectively.

  • PDF

Review of the Polycarbonate (Polycarbonate의 고찰)

  • Choi, Gei-Hun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.313-322
    • /
    • 2004
  • Glasses are to be classified in organic glasses and inorganic glasses. Generally, we just call glasses instead of calling inorganic glasses and call synthetic resin or plastic instead of calling organic glasses. One of the ophthalmic plastic glasses develops into polycarbonate resin in organic glasses. Recently, polycarbonate resin is widely known because it has larger index and impact than plastic lens. Ours study analyzed about polycarbonate resin in ophthalmic substance.

  • PDF

Coloration approaches on sheath/core type nylon fibers having PCM particles

  • Kim, Hyung-Joo;Park, June-Min;Lee, A-Reum;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.70-70
    • /
    • 2012
  • Thermo-regulated textiles have been attracted more attention in medical textile application areas. Phase change materials, namely PCM, are substance with a high hear of fusion and can absorb a lot of energy before melting, which make the temperature remain constant during the phase changes. Herein, using nylon fibers having different PCM content were dyed and characterized to determine the coloration properties with PCM content ratio. The corresponding findings were discussed.

  • PDF

Transport and Removal of Organic Substances in Soils by Electroosmosis (전기삼투기법에 의한 토양내 유기오염물질의 이동 및 제거)

  • ;Gilliane C. Sills
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.48-51
    • /
    • 1998
  • This paper presents the transport and removal of organic substances from the contaminated soft soils and sludges such as marine dredging waste, marine sediments, mine tailing waste, and sewage sludge by electroosmosis. A series of laboratory experiments including variable conditions such as contamination levels, solid contents, and applied voltage rates were peformed with the contaminated soft clay specimen mixed with organic substance. Investigated are specimen density, dewatering rate, outflow rate, and outflow concentration. The test results showed that organic substances in the soils were removed by applied voltages. The results indicated that this process can be used efficiently to clean up the contaminated soil.

  • PDF

Availability Evaluation of TOC as the Environmental Standard - Survey of Lakes in Nakdong River Basin - (환경기준으로서의 TOC에 대한 활용성 평가 - 낙동강수계 호소를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.173-180
    • /
    • 2018
  • The utilization of TOC(Total organic carbon), a new environmental standard, was evaluated for 30 lakes in the Nakdong River Basin, which is used for drinking and agricultural usage. The active use of water resources begins with securing satisfactory water quality. Since this allows people and nature to maintain stability of quality, water quality standards are being tightened to ensure good water quality. In order to improve the pollution level of organic matter in lakes in the living environment, it is important to use the appropriate organic substance index. The relationship between the newly introduced TOC and the existing COD(Chemical oxygen demand) in the targeted lake was positively correlated with the possibility of replacing the TOC with COD. However, the environmental grade standard using TOC is better than the environmental grade standard using COD, so it has the same effect as that of the grade of water quality using TOC as an organic substance factor. This indicates the limitation of TOC to directly replace existing COD when trying to determine or improve the quality level using organic indicators of lakes. Therefore, in order to secure the qualitative safety of the lake, it is required to strengthen environmental standards of TOC in terms of water quality grade. In addition, the correlation between TOC and COD shows a great difference depending on the utilization characteristics of the lake. This requires clear scientific identification, and it requires continuous monitoring of COD that has been used to accumulate indicators of lake organic matter.