The Distribution of DOM and POM and the Composition of Stable Carbon Isotopes in Streams of Agricultural and Forest Watershed Located in the Han River System

한강수계 농경지역 하천과 삼림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비

  • Kim, Jai-Ku (Department of Environmental Science, Kangwon National University) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University) ;
  • Jung, Sung-Min (Department of Environmental Science, Kangwon National University) ;
  • Jang, Chang-Won (Department of Environmental Science, Kangwon National University) ;
  • Shin, Myoung-Sun (Department of Environmental Science, Kangwon National University) ;
  • Lee, Yun-Kyoung (Department of Environmental Science, Kangwon National University)
  • Published : 2007.03.30

Abstract

The runoff characteristics of organic matter in turbid water were investigated in eleven tributary streams of the Han River system, Korea. The flow-weighted event mean concentrations of organic matter ranged from 1.5 to 3.2 mg $L^{-1}$ of DOM and 2.2 of 29.1 mg $L^{-1}$ of POM, respectively. The SUVA value which reflects the proportion of humic substance in organic matters was higher during the rainfall season, meaning that the runoff of refractory form increase in this period. Stable carbon isotope ratios of both POM and DOM were different among streams, which reflect the sources of organic matter. DOM isotope ratios were less depleted of $^{13}C$ than that of POM by approximately 1 to $2%_{\circ}$ ${\delta}^{13}C$ of the several turbid streams (the Mandae Stream, the Jawoon Stream, and the Daegi stream) were heavier than those of clear streams. ${\delta}^{13}C$ values in the turbid upstream tributaries were similar to those of downstream reaches (such as the Soyang River, the Sum River, and the Seo River). From the ${\delta}^{13}C$ analysis of POM it could be calculated that $C_4$ pathway contributed approximately 15.9 to 23.6% of organic matter in several turbid upstream sites, and over 20% in the three sites of large downstream reaches. On the contrary it contributed only 9.1 to 12.8% in clear streams of forest watersheds. In the Soyang River, $C_4$ pathway organic matter contributed 8.8% of the DOM pool.

남한강과 북한강 상류지역에 위치한 11개 하천을 대상으로 강우 시 발생하는 탁수의 생지화학적 특성을 조사하였다. 강우 시 하천에서 POM와 DOM의 유출특성은 유량변동에 따라 다르게 나타났으며, 특히 POM의 유출은 하천의 유역특성과 밀접한 관련이 있는 것으로 나타났다. 강우의 영향에 따라 DOM내 용존 부식물질(Humic substance)의 비율을 반영하는 SUVA값이 증가하였고, 이는 하천유역으로부터 난분해성유기물의 유입이 증가함을 의미한다. 강우 시 발생된 탁수의 생지화학적 특성을 분석한 결과 농경지역에서 유출되는 탁수가 삼림지역으로부터 유출되는 탁수보다 안정탄소동위원소비가 약 $1{\sim}2%_{\circ}$정도 높게 나타났다. 이는 상대적으로 안정탄소동위원소비가 높은 $C_4$계열의 작물이 농경지역에서 우세한 경우 또는 삼림지역으로부터 유출된 탁수에서 주로 $C_3$계열의 식물체의 리그닌(Lignin)의 함량이 높기 때문이다. 유기물의 기원에 따라 Isotopic mass balance를 적용한 결과 농경지나 경작지의 비율이 높아질수록 $C_4$계열 작물의 기여도가 높아지고 이에 따라 탄소동위원소비가 증가하는 경향을 보였다. 본 연구결과를 바탕으로 안정탄소동위원소를 이용한 탁수 연구는 유기물의 기원특성을 연구하는데 유용한 지표가 될 수 있다.

Keywords

References

  1. 김범철, 최광순, 심수용. 1997. 비점오염원으로부터의 인의 홍수유출. 하천.호수의 수질보존과 유역관리에 관한 한.일 공동 세미나 자료집. 167-177
  2. 김범철, 전만식, 김윤희. 2003. 아시아 몬순지역에서의 수질관리방안. 춘천 물 포럼 발표논문집. 59-77
  3. 환경부. 1997. 살균기법 및 부산물 제어기술
  4. 허우명, 김범철, 김윤희, 최광순. 1998. 소양호 유역에서 비점오염원의 홍수유출과 오염수괴의 호수내 이동. 육수지 31: 1-8
  5. 허우명, 김범철, 김윤희. 1999. 달방댐 유입수의 강우에 따른 인 농도변화와 인 부하량. 육수지 32: 43-48
  6. APHA. 1998. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington, DC
  7. Beck, K.C., J.H. Reuter and E.M. Perdue. 1974. Organic and inorganic geochemistry of some coastal plain rivers of the Southeastern United States. Geochim. Cosmochim. Acta. 38: 341-364 https://doi.org/10.1016/0016-7037(74)90130-6
  8. Brinson, M.M. 1976. Organic matter losses from four watersheds in the humid trophic. Limnol. Oceanogr. 21: 572-582 https://doi.org/10.4319/lo.1976.21.4.0572
  9. Degens, E.T. 1982. Transport of carbon and minerals in major world river Part 1, Proceedings of a workshop arranged by Scientific Committee on Problems of the Environment (SCOPE) and the United Nations Environment Programme (UNEP) at Hamburg University, March 8-12
  10. Devito, K.J. 1994. Hydrologic control of sulfur dynamics in headwater wetlands of the Canadian Shield. Ph. D. Thesis, York University, Toronto, Canada. 210p
  11. Eadie, B.J., L.M. Jeffrey and W.M. Sackett. 1978. Some observations on the stable carbon isotope composition of dissolved and particulate organic carbon in the marine environment. Geochim. Cosmochim. Acta. 42: 1265-1269 https://doi.org/10.1016/0016-7037(78)90120-5
  12. Fry, B. and E.B. Sherr. 1984. $\delta^{13}$C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 196-229
  13. Hedges, J.I. and P.L. Parker. 1976. Land-derived organic matter in surface sediments from the Gulf of Mexico: Geochim. Cosmochim. Acta. 40: 1019-1029 https://doi.org/10.1016/0016-7037(76)90044-2
  14. Hinton, M.J., S.L. Schiff and M.C. English. 1997. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochem. 36: 67-88 https://doi.org/10.1023/A:1005779711821
  15. Hughes, E.H. and E.B. Sherr. 1983. Subtidal food webs in a Georgia estuary: $\delta^{13}$C analysis. J. Exp. Mar. Biol. Ecol. 67: 227-242 https://doi.org/10.1016/0022-0981(83)90041-2
  16. Johnson, N.M., G.E. Liken, F.H. Bormann, D.W. Fisher and RS. Pierce. 1969. A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Wat. Res. Res. 5: 1353-1363 https://doi.org/10.1029/WR005i006p01353
  17. Kerr, R.A. and J.G. Quinn. 1980. Chemical comparison of dissolved organic matter isolated from different oceanic environments. Mar. Chem. 8: 217-229 https://doi.org/10.1016/0304-4203(80)90011-0
  18. Lewis, W.M. and M.C. Grant. 1980. Acid precipitation in the western United States. Science 207: 176-177 https://doi.org/10.1126/science.207.4427.176
  19. Likens, G.E., F.H. Bormann, R.S. Pierce, G.S. Eaton and N.M. Johnson. 1977. Biogeochemistry of a forested ecosystem, Springer-Verlag. NY
  20. Malcolm, R. 1990. The uniqueness of humic substances in each of soil, stream, and marine environments. Anal. Chim. Acta. 232: 19-30 https://doi.org/10.1016/S0003-2670(00)81222-2
  21. McDowell, W.H. and G.G. Fisher. 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57: 561-569 https://doi.org/10.2307/1936440
  22. McKnight, D.M., E.D. Andrews, S.A Spaulding and G.R. Aiken. 1994. Aquatic fulvic acids in algal rich antarctic ponds. Limnol. Oceanogr. 39: 1972-1979 https://doi.org/10.4319/lo.1994.39.8.1972
  23. McKnight, D.M., R. Harnish, R.L. Wershaw, J.S. Baron and S. Schiff. 1997. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochem. 36: 99-124 https://doi.org/10.1023/A:1005783812730
  24. Moeller, J.R., G.W. Minshall, K.W. Cummins, R.C. Petersen, C.E. Cushing, J.R. Sedell, R.A. Larson and R.L. Vannote. 1979. Transport of dissolved organic carbon in streams of differing physiographic characteristics. Org. Geochem. 1: 139-150 https://doi.org/10.1016/0146-6380(79)90002-0
  25. Mulholland. P.J. and E.J. Kuenzler. 1979. Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24: 960-966 https://doi.org/10.4319/lo.1979.24.5.0960
  26. Naiman, R.J. and J.R. Sibert. 1978. Transport of nutrients and carbon from the Nanaimo River to its estuary. Limnol. Oceanogr. 11: 1-10
  27. Owens, N.J.R. 1987. Natural variation in 15N in the marine environment. Adv. Mar. Biol. 24: 390-451
  28. Schiff, S.L., R. Aravena, S.E. Trumbore and P.J. Dillon, 1990. Dissolved organic carbon cycling in forested watersheds: A Carbon isotope Approach. Wat. Res. Res. 26: 2949-2957 https://doi.org/10.1029/WR026i012p02949
  29. Smith, B.N. and S. Epstein. 1971. Two categories of $^{13}C/^{12}C$ ratios for higher plants. Plant Physiol. 47: 380-384 https://doi.org/10.1104/pp.47.3.380
  30. USEPA. 1997. National primary drinking water regulation: Disinfectants and disinfection by-products; Notice of data availability; proposed rule. 62(212): 59387-59484. Washington, D.C
  31. Wallis, P.M. 1979. Sources, transportation and utilization of dissolved organic matter in groundwater and streams: Kananskis center for environmental research, University of Calgary, Inland Water Directorate Scientific Series # 100: Environment Canada, Ottawa
  32. Weber, C.I. and D.R. Moore. 1967. Phytoplankton, seston, and dissolved organic carbon in the Little Miami River at Cincinnati, Ohio. Limnol. Oceanogr. 12: 311-318 https://doi.org/10.4319/lo.1967.12.2.0311
  33. Zepp, R.G. 1988. Environmental photoprocesses involving natural organic matter. In: Humic substances and their role in the environment (F.H. Frimmel and R.F. Christman, eds.). Wiley, NY