• Title/Summary/Keyword: orbit parameter

Search Result 94, Processing Time 0.021 seconds

Modeling of Reaction Wheel Using KOMPSAT-1 Telemetry (KOMPSAT-1 Telemetry를 활용한 반작용휠 모델링)

  • Lee, Seon-Ho;Choi, Hong-Taek;Yong, Gi-Ryeok;Oh, Si-Hwan;Rhee, Seung-U
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The design of reaction wheel control logic is critical to achieve the spacecraft attitude stabilization and performance requirements for the successful mission. Due to various uncertainties on orbit there exist limitation to obtain the model parameters through the ground tests and to design the associated control logic. Thus, the model parameter correction using on-orbit data is essential to the control performance on orbit. This paper performs the system identification using KOMPSAT-1 telemetry data and extracts the model parameters of the reaction wheel. Moreover, the reaction wheel is remodeled and compared with the ground test results.

A Study on Variation of Orbital Elements according to Variation of Target Value of Lunar Orbit Insertion (달 궤도 진입 목표값 변화에 따른 궤도요소 변화 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Min, SeungYong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.16-22
    • /
    • 2015
  • Korea Aerospace Research Institute(here after KARI) has a plan to launch experimental lunar orbiter in 2018, and lunar orbiter and lander in 2020. There are several ways to go to the moon. Which one is direct transfer trajectory and another one is phasing loop transfer trajectory and the other one is WSB trajectory. Regardless of the transfer trajectories, LOI maneuver is the most important maneuver of all mission sequences because if this burn is failed, it is too difficult to get into the lunar orbit in the future. This paper describes first LOI target value of foreign lunar orbiters and analyzes orbital variations of experimental lunar orbiter according to various target values. By analyzing the variation of orbiter parameter after first LOI, proper orbital period for LOI target value are recommended to meet the inclination, apoapsis and periapsis altitude constraints.

Analysis of thermally induced vibration of cable-beam structures

  • Deng, Han-Qing;Li, Tuan-Jie;Xue, Bi-Jie;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.443-453
    • /
    • 2015
  • Cable-beam structures characterized by variable stiffness nonlinearities are widely found in various structural engineering applications, for example in space deployable structures. Space deployable structures in orbit experience both high temperature caused by sun's radiation and low temperature by Earth's umbral shadow. The space temperature difference is above 300K at the moment of exiting or entering Earth's umbral shadow, which results in structural thermally induced vibration. To understand the thermally induced oscillations, the analytical expression of Boley parameter of cable-beam structures is firstly deduced. Then, the thermally induced vibration of cable-beam structures is analyzed using finite element method to verify the effectiveness of Boley parameter. Finally, by analyzing the obtained numerical results and the corresponding Boley parameters, it can be concluded that the derived expression of Boley parameter is valid to evaluate the occurrence conditions of thermally induced vibration of cable-beam structures and the key parameters influencing structural thermal flutter are the cable stiffness and thickness of beams.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Proton Irradiation Effects on GaN-based devices

  • Keum, Dongmin;Kim, Hyungtak;Cha, Ho-Young
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Along with the needs for feasibility in the field of space applications, interests in radiation-hardened electronics is growing rapidly. Gallium nitride (GaN)-based devices have been widely researched so far owing to superb radiation resistance. Among them, research on the most abundant protons in low earth orbit (LEO) is essential. In this paper, proton irradiation effects on parameter changes, degradation mechanism, and correlation with reliability of GaN-based devices are summarized.

Average performance of risk-sensitive controlled orbiting satellite and three-degree-of-freedom structure

  • Won, Chang-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.444-447
    • /
    • 1995
  • The satellite in a circular orbit about a planet with disturbances and a three-degree-of-freedom (3DOF) structure under seismic excitations are modeled by the linear stochastic differential equations. Then the risk-sensitive optimal control method is applied to those equations. The mean and the variance of the cost function varies with respect to the risk-sensitivity parameter, .gamma.$_{RS}$ . For a particular risk-sensitivity parameter value, risk-sensitive control reduces to LQG control. Furthermore, the derivation of the mean square value of the state and control action are given for a finite-horizon full-state-feedback risk-sensitive control system. The risk-sensitive controller outperforms a classical LQG controller in the mean square sense of the state and the control action.

  • PDF

Nonlinear Parameter Identification of a Partial Rubbing Rotor (부분회전마멸의 비선형 설계변수 규명)

  • 박상문;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.663-668
    • /
    • 2004
  • To model and understand the physics of partial rub, a nonlinear rotor model is investigated by applying nonlinear parameter identification technique to the experimental data. The results show that the nonlinear terms of damping and stiffness should be included to model partial rotor rub. Especially, the impact and friction during the contact between rotor and stator are tried to explain with the nonlinear model on the basis of experimental data. The estimated nonlinear model shows good agreements between numerical and experimental results in its orbit.

  • PDF

Statistical properties of the fast flows accompanied by dipolarization in the near-Earth tail

  • Kim, Hyun-Sook;Lee, Dae-Young;Ahn, Byung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.4-41
    • /
    • 2010
  • Using magnetic field and plasma moment data obtained by THEMIS satellites(A, D, and E), we selected 203 fast flow events accompanied by dipolarization in the near-Earth region( X(GSM) = -7 ~ -12 RE) and statistically examined their properties. It was found that most of the fast flows show the maximum velocity between 1 minute before dipolarization onset and 2 minutes after onset and proceed earthward and duskward. We also found that only the flows with low velocity of less than 400 km/s are observed at X > -8 RE, while the high velocity flows(as well as low velocity flows) are observed at the further tailward region(X < -8 RE). And most of the tailward flows are slow regardless of distance at X(GSM) = -7 ~ -12 RE. On the other hand, if we consider the fast flow as a bubble (Pontius and Wolf, 1990), the entropy parameter, PV5/3 is an important factor to describe the plasma sheet dynamics. Thus we investigated the relationship between the flow velocity and the amount of change in PV5/3 before and after dipolarization onset and found out that the dipolarizations with more depleted entropy parameter tend to show higher flow velocity. Also we examined how the magnetic field at geosynchronous orbit responds to the fast flow accompanied by dipolarization in the near-earth plasma sheet, using the measurements from GOES 11 and 12 statellites. We found that most of the fast flows do not reach geosynchronous orbit as suggested by Ohtani et al. (2006).

  • PDF

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS (실시간 응용을 위한 GPS 정밀 궤도력 결정)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • The accuracy of GPS applications is heavily dependent on the satellite ephemeris and earth orientation parameter. Specially applications like as the real time monitoring of troposphere and ionosphere require real time or predicted ephemeris arid earth orientation parameter with very high quality. IGS is producing IGS ultra rapid product called IGU for real time applications which includes the information of ephemeris and earth orientation. IGU is being made available twice everyday at 3:00 and 15:00 UTC arid covers 48 hours. The first 24 hours of it are based on actual GPS observations and the second 24 hours extrapolated. We will construct the processing strategy for yielding ultra rapid product and demonstrate the propriety through producing it using 48 hours data of 32 stations.

  • PDF