• Title/Summary/Keyword: orbit

Search Result 2,393, Processing Time 0.03 seconds

A Study on the Enhancement of DEM Resolution by Radar Interferometry (레이더 간섭기법을 이용한 수치고도모델 해상도 향상에 관한 연구)

  • Kim Chang-Oh;Kim Sang-Wan;Lee Dong-Cheon;Lee Yong-Wook;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.287-302
    • /
    • 2005
  • Digital Elevation Models (DEMs) were generated by ERS-l/2 and JERS-1 SAR interferometry in Daejon area, Korea. The quality of the DEM's was evaluated by the Ground Control Points (GCPs) in city area where GCPs were determined by GPS surveys, while in the mountain area with no GCPs, a 1:25,000 digital map was used. In order to minimize errors due to the inaccurate satellite orbit information and the phase unwrapping procedure, a Differential InSAR (DInSAR) was implemented in addition to the traditional InSAR analysis for DEM generation. In addition, DEMs from GTOPO30, SRTM-3, and 1:25,000 digital map were used for assessment the resolution of the DEM generated from DInSAR. 5-6 meters of elevation errors were found in the flat area regardless of the usage and the resolution of DEM, as a result of InSAR analyzing with a pair of ERS tandem and 6 pairs of JERS-1 interferograms. In the mountain area, however, DInSAR with DEMs from SRTM-3 and the digital map was found to be very effective to reduce errors due to phase unwrapping procedure. Also errors due to low signal-to-noise ratio of radar images and atmospheric effect were attenuated in the DEMs generated from the stacking of 6 pairs of JERS-1. SAR interferometry with multiple pairs of SAR interferogram with low resolution DEM can be effectively used to enhance the resolution of DEM in terms of data processing time and cost.

A Suggestion for Surface Reflectance ARD Building of High-Resolution Satellite Images and Its Application (고해상도 위성 정보의 지표 반사도 Analysis-Ready Data (ARD) 구축과 응용을 위한 제언)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1215-1227
    • /
    • 2021
  • Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations (GOCI와 AHI 자료를 활용한 에어로졸 광학두께 합성장 산출 연구)

  • Kang, Hyeongwoo;Choi, Wonei;Park, Jeonghyun;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.861-870
    • /
    • 2021
  • In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.

Forest Fire Monitoring System Using Satellite (위성활용 산불감시 시스템 구축)

  • Park, Beom-Sun;Cho, In-Je;Lim, Jae-Hwan;Kim, In-Bae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.143-150
    • /
    • 2021
  • It introduces the contents of establishing a geostationary satellite-based forest fire monitoring system that can monitor areas of the Korean Peninsula 24 hours a day for forest fire monitoring, and describes how to establish a forest fire monitoring system and use it in various ways. In order to establish a satellite-utilized forest fire monitoring system, we will describe and draw conclusions on literature research, technical principles, forest fire monitoring means, and satellite forest fire monitoring system. The satellite-utilized forest fire monitoring system can consist of one geostationary satellite equipped with infrared detection optical sensors and a ground processing station that processes data received from satellites to spread surveillance information. Forest fire monitoring satellites are located in the country's geostationary orbit and should be operated 24 hours a day, 365 days a day. Forest fire monitoring technology is an infrared detection technology that can be used in national public interests such as forest fire monitoring and national security. It should be operated 24 hours a day, and to satisfy this, it is efficient to establish a geostationary satellite-based forest fire monitoring satellite system.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update (천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트)

  • Jin, Kyoungwook;Lee, Sang-Cherl;Lee, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.359-365
    • /
    • 2021
  • GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite (위성의 자세기동에 따른 진동특성에 관한 연구)

  • Pyeon, Bong-Do;Bae, Jae-Sung;Kim, Jong-Hyuk;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2019
  • The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.

Optimal Design of Stiffness of Torsion Spring Hinge Considering the Deployment Performance of Large Scale SAR Antenna (전개성능을 고려한 대형 전개형 SAR 안테나의 회전스프링 힌지의 강성 최적설계)

  • Kim, Dong-Yeon;Lim, Jae Hyuk;Jang, Tae-Seong;Cha, Won Ho;Lee, So-Jeong;Oh, Hyun-Ung;Kim, Kyung-Won
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.78-86
    • /
    • 2019
  • This paper describes the stiffness optimization of the torsion spring hinge of the large SAR antenna considering the deployment performance. A large SAR antenna is folded in a launch environment and then unfolded when performing a mission in orbit. Under these conditions, it is very important to find the proper stiffness of the torsion spring hinge so that the antenna panels can be deployed with minimal impact in a given time. If the torsion spring stiffness is high, a large impact load at the time of full deployment damages the structure. If it is weak, it cannot guarantee full deployment due to the deployment resistance. A multi-body dynamics analysis model was developed to solve this problem using RecurDyn and the development performance were predicted in terms of: development time, latching force, and torque margin through deployment analysis. In order to find the optimum torsion spring stiffness, the deployment performance was approximated by the response surface method (RSM) and the optimal design was performed to derive the appropriate stiffness value of the rotating springs.

Comparative Analysis of Algorithm for Calculation of Absorbed Shortwave Radiation at Surface Using Satellite Date (위성 자료를 이용한 지표면 흡수단파복사 산출 알고리즘들의 비교 분석)

  • Park, Hye-In;Lee, Kyu-Tae;Zo, Il-Sung;Kim, Bu-Yo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.925-939
    • /
    • 2018
  • Absorbed shortwave radiation at the surface is an important component of energy analysis among the atmosphere, land, and ocean. In this study, the absorbed shortwave radiation was calculated using a radiation model and surface broadband albedo data for application to Geostationary Earth Orbit Korea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A). And the results (GWNU algorithm) were compared with CERES data and calculation results using pyranometer and MODIS (Moderate Resolution Imaging Spectroradiometer) data to be selected as the reference absorbed shortwave radiation. This GWNU algorithm was also compared with the physical and statistical algorithms of GOSE-R ABI and two algorithms (Li et al., 1993; Kim and Jeong, 2016) using regression equation. As a result, the absorbed shortwave radiation calculated by GWNU algorithm was more accurate than the values calculated by the other algorithms. However, if the problem about computing time and accuracy of albedo data arise when absorbed shortwave radiation is calculated by GWNU algorithm, then the empirical algorithms explained above should be used with GWNU algorithm.

Feasibility Study on Producing 1:25,000 Digital Map Using KOMPSAT-5 SAR Stereo Images (KOMPSAT-5 레이더 위성 스테레오 영상을 이용한 1:25,000 수치지형도제작 가능성 연구)

  • Lee, Yong-Suk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1329-1350
    • /
    • 2018
  • There have been many applications to observe Earth using synthetic aperture radar (SAR) since it could acquire Earth observation data without reference to weathers or local times. However researches about digital map generation using SAR have hardly been performed due to complex raw data processing. In this study, we suggested feasibility of producing digital map using SAR stereo images. We collected two sets, which include an ascending and a descending orbit acquisitions respectively, of KOMPSAT-5 stereo dataset. In order to suggest the feasibility of digital map generation from SAR stereo images, we performed 1) rational polynomial coefficient transformation from radar geometry, 2) digital resititution using KOMPSAT-5 stereo images, and 3) validation using digital-map-derived reference points and check points. As the results of two models, root mean squared errors of XY and Z direction were less than 1m for each model. We discussed that KOMPSAT-5 stereo image could generated 1:25,000 digital map which meets a standard of the digital map. The proposed results would contribute to generate and update digital maps for inaccessible areas and wherever weather conditions are unstable such as North Korea or Polar region.