Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.1.3

Fusion of Aerosol Optical Depth from the GOCI and the AHI Observations  

Kang, Hyeongwoo (Geomatics Research Institute, Pukyong National University)
Choi, Wonei (Geomatics Research Institute, Pukyong National University)
Park, Jeonghyun (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Serin (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Hanlim (Department of Spatial Information Engineering, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_1, 2021 , pp. 861-870 More about this Journal
Abstract
In this study, fused Aerosol Optical Depth (AOD) data were produced using AOD products from the Geostationary Ocean Color Imager (GOCI) onboard Communication, Oceanography and Meteorology Satellite (COMS)satellite and the Advanced Himawari Imager (AHI) onboard Himawari-8. Since the spatial resolution and the coordinate system between the satellite sensors are different, a preprocessing was first preceded. After that, using the level 1.5 AOD dataset of AErosol RObotic NETwork (AERONET), which is ground-based observation, correlations and trends between each satellite AOD and AERONET AOD were utilized to produce more accurate satellite AOD data than the originalsatellite AODs. The fused AOD were found to be more accurate than the originalsatellite AODs. Root Mean Square Error (RMSE) and mean bias of the fused AODs were calculated to be 0.13 and 0.05, respectively. We also compared errors of the fused AODs against those of the original GOCI AOD (RMSE: 0.15, mean bias: 0.11) and the original AHI AOD (RMSE: 0.15, mean bias: 0.05). It was confirmed that the fused AODs have betterspatial coverage than the original AODsin areas where there are no observations due to the presence of cloud from a single satellite.
Keywords
AOD Fusion; Geostationary Orbit Satellite; AERONET; Aerosol Optical Depth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Griggs, M., 1975. Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data, Journal of the Air Pollution Control Association, 25: 622-626.   DOI
2 Prasad, A.K. and R.P. Singh, 2007. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000-2005), Remote Sensing of Environment, 107(1-2): 109-119.   DOI
3 Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, I. Slutsker, 2000. Cloud-Screening and Quality Control Algorithms for the AERONET Database, Remote Sensing of Environment, 73(3): 337-349.   DOI
4 Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, B. Holben, T.F. Eck, Z. Li, and C.H. Song, 2018. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmospheric Measurement Techniques, 11: 385-408.   DOI
5 Christakos, G., 2000. Modern Spatiotemporal Geostatistics, Oxford Univ. Press, New York, USA.
6 Cox, C. and W. Munk, 1954. Measurement of the roughness of the sea surface from photographs of the Sun's glitter, Journal of the Optical Society of America, 44(11): 838-850.   DOI
7 Lau, K.M. and K.M. Kim, 2006. Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophysical Research Letters, 33(21): L21810.   DOI
8 Tyagi, B., G. Choudhury, N.K. Vissa, J. Singh, and M. Tesche, 2021. Changing air pollution scenario during COVID-19: Redefining the hotspot regions over India, Environmental Pollution, 271: 116354.   DOI
9 Garay, M.J., O.V. Kalashnikova, and M.A. Bull, 2017. Development and assessment of a higher-spatialresolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data, Atmospheric Chemistry and Physics, 17(8): 5095-5106.   DOI
10 Twomey, S., 1977. The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34(7):1149-1152.   DOI
11 Wang, Y., Q. Yuan, T. Li, H. Shen, L. Zheng, and L. Zhang, 2019. Large-scale MODIS AOD products recovery: Spatial-temporal hybrid fusion considering aerosol variation mitigation, ISPRS Journal of Photogrammetry and Remote Sensing, 157: 1-12.   DOI
12 Yoon, J.M., J. Kim, J.H. Lee, H.K. Cho, B.-J. Sohn, and M.-H. Ahn, 2007, Retrieval of aerosol optical depth over east Asia from a geostationary satellite, MTSAT-1R, Asia-Pacific Journal of Atmospheric Sciences, 43(2): 49-58.
13 Jinnagara Puttaswamy, S., H.M. Nguyen, A. Braverman, X. Hu, and Y. Liu, 2014. Statistical data fusion of multi-sensor AOD over the continental United States, Geocarto International, 29(1): 48-64.   DOI
14 Han, D., 2013. Comparison of commonly used image interpolation methods, Proc. of the 2nd international conference on computer science and electronics engineering, Hangzhou, CN, Mar. 22-23, pp. 1556-1559.
15 Hsu, N.C., S.-C. Tsay, M.D. King, and J.R. Herman, 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3180-3195.   DOI
16 Hsu, N.C., M.J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, and S.C. Tsay, 2013. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, Journal of Geophysical Research: Atmospheres, 118(16): 9296-9315.   DOI
17 Kalashnikova, O.V., M.J. Garay, J.V. Martonchik, and D.J. Diner, 2013. MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle nonsphericity, Atmospheric Measurement Techniques, 6(8): 2131-2154.   DOI
18 Gupta, P., M.N. Khan, A. da Silva, and F. Patadia, 2013. MODIS aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring, Atmospheric Pollution Research, 4(1): 43-52.   DOI
19 Kim, J., J.M. Yoon, M. Ahn, B. Sohn, and H. Lim, 2008. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT1R, International Journal of Remote Sensing, 29(21): 6181-6192.   DOI
20 Lim, H., S. Go, J. Kim, M. Choi, S. Lee, C.K. Song, and Y. Kasai, 2020. Integration of GOCI and AHI Yonsei Aerosol Optical Depth Products During the 2016 KORUS-AQ and 2018 EMeRGe Campaigns, Atmospheric Measurement Techniques, 14: 4575-4592.
21 Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, and T. Nakajima, 1998. AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66(1): 1-16.   DOI
22 Kaskaoutis, D.G., H.D. Kambezidis, N. Hatzianastassiou, P.G. Kosmopoulos, and K.V.S. Badarinath, 2007. Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites, Atmospheric Chemistry and Physics Discussions, 7(3): 7347-7397.   DOI
23 Levy, R., S. Mattoo, L. Munchak, L. Remer, A. Sayer, and N. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean, Atmospheric Measurement Techniques, 6: 2989-3034.   DOI
24 Sayer, A.M., N.C. Hsu, C. Bettenhausen, M.-J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data, Journal of Geophysical Research: Atmospheres, 118(14): 7864-7872.   DOI
25 Tang, Q., Y. Bo, and Y. Zhu, 2016. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method, Journal of Geophysical Research: Atmospheres, 121(8): 4034-4048.   DOI
26 Wang, J., S.A. Christopher, F. Brechtel, J. Kim, B. Schmid, J. Redemann, P. B. Russell, P. Quinn, and B.N. Holben, 2003. Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia, Journal of Geophysical Research: Atmospheres, 108(D23): 8657.   DOI
27 Jayroe Jr, R.R., 1976. Nearest neighbor, bilinear interpolation and bicubic interpolation geographic correction effects on LANDSAT imagery, https://ntrs.nasa.gov/citations/19770003666, Accessed on Sep. 2, 2021.
28 Zhang, H., S. Kondragunta, I. Laszlo, H. Liu, L.A. Remer, J. Huang, S. Superczynski, and P. Ciren, 2016, An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database, Journal of Geophysical Research: Atmospheres, 121(18): 10,717-10,738.
29 Gupta, P., L.A. Remer, R.C. Levy, S. Mattoo, 2018. Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions, Atmospheric Measurement Techniques, 11: 3145-3159.   DOI
30 Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O'neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24): 31333-31349.   DOI