DOI QR코드

DOI QR Code

A Study on the Enhancement of DEM Resolution by Radar Interferometry

레이더 간섭기법을 이용한 수치고도모델 해상도 향상에 관한 연구

  • Kim Chang-Oh (Dept. of Geoinformation Engineering, Sejong University) ;
  • Kim Sang-Wan (Dept. of Earth System Sciences, Yonsei University, Division of Marine Geology and Geophysics, Univ. of Miami, FL, USA) ;
  • Lee Dong-Cheon (Dept. of Geoinformation Engineering, Sejong University) ;
  • Lee Yong-Wook (Korean Association of Surveying k Mapping Institute for Geomatics) ;
  • Kim Jeong Woo (Dept. of Geoinformation Engineering, Sejong University)
  • 김창오 (세종대학교 지구정보공학과) ;
  • 김상완 (연세대학교 지구시스템과학과) ;
  • 이동천 (세종대학교 지구정보공학과) ;
  • 이용욱 (대한측량협회 측량정보기술연구원) ;
  • 김정우 (세종대학교 지구정보공학과)
  • Published : 2005.08.01

Abstract

Digital Elevation Models (DEMs) were generated by ERS-l/2 and JERS-1 SAR interferometry in Daejon area, Korea. The quality of the DEM's was evaluated by the Ground Control Points (GCPs) in city area where GCPs were determined by GPS surveys, while in the mountain area with no GCPs, a 1:25,000 digital map was used. In order to minimize errors due to the inaccurate satellite orbit information and the phase unwrapping procedure, a Differential InSAR (DInSAR) was implemented in addition to the traditional InSAR analysis for DEM generation. In addition, DEMs from GTOPO30, SRTM-3, and 1:25,000 digital map were used for assessment the resolution of the DEM generated from DInSAR. 5-6 meters of elevation errors were found in the flat area regardless of the usage and the resolution of DEM, as a result of InSAR analyzing with a pair of ERS tandem and 6 pairs of JERS-1 interferograms. In the mountain area, however, DInSAR with DEMs from SRTM-3 and the digital map was found to be very effective to reduce errors due to phase unwrapping procedure. Also errors due to low signal-to-noise ratio of radar images and atmospheric effect were attenuated in the DEMs generated from the stacking of 6 pairs of JERS-1. SAR interferometry with multiple pairs of SAR interferogram with low resolution DEM can be effectively used to enhance the resolution of DEM in terms of data processing time and cost.

ERS-1/9 및 JERS-1 SAR 영상의 레이더 영상 간섭기법을 이용하여 대전지역의 수치고도모델 (DEM)을 제작하였다 도심지역에서는 GPS 측량으로부터 추출된 지상기준점(GCP)를 이용하여 생성된 DEM의 정밀도를 분석하였고, GCP가 없는 산악지 역에서는 1:25,000 수치지도로부터 추출된 DEM과의 상대적 고도차를 이용하여 정확도를 평가하였다 위성의 궤도오차 및 phase unwrapping에 의한 고도 오차를 최소화하기 위해 DEM생성에 이용되는 전통적인 InSAR기법 외에 DInSAR기법을 추가로 적용하였다. 또한 DInSAR기법 적용시 사용된 DEM의 해상도에 따른 결과의 정밀도를 분석하기 위해 GTOPO30, SRTM-3, 그리고 1:25,000 수치지도로부터 생성된 DEM을 사용하였다. 하나의 ERS tandem 간섭쌍과, 6개의 JERS-1 간섭쌍 분석 결과, 위상간섭기법 적용 시 평지 지역에서의 정밀도는 DEM 사용 여부 및 사용된 DEM의 해상도에 무관하게 약 5-6 m의 고도오차를 보인다 반면 산악지역에서는 SRTM-3 및 1:25,000 수치지도 DED을 이용한 DInSAR 기법이 phase unwrapping에 의한 오차를 줄이는데 매우 효과적이었다. 또한 6 개의 JERS-1 간섭쌍의 중첩을 통해 제작한 DEM의 경우 레이더 영상의 낮은 신호대잡음비 및 대기에 의한 오차를 줄일 수 있었다. 다수의 SAR 간섭쌍과 저해상도 DEM을 이용한 위상간섭기법은 저비용으로 빠른 시간 내에 DEM 해상도를 향상하는데 매우 효과적인 수단으로 사용될 수 있다.

Keywords

References

  1. 윤근원, 김상완, 민경덕, 원중선, 2001. DEM 정밀도 향상을 위한 2-pass DlnSAR 방법의 적용, 대한원격탐사학회지, 17(3): 231-242
  2. Carrasco, D., S. Sanz, R. Sousa, and A. Broquetas, 1996. The Developing of a Wide Area Interferometric Processor, Proc. FRINGE 96 Workshop, Zurich, Switzerland, pp. 93-201
  3. Chen, C. W., 2001. Statistical-Cost Network-Flow Approaches to Two-Dimensional phase unwrapping for radar inteiferometry, Standford Uinversity, PhD. Dissertation
  4. Fazio, M. D. and F. Vinelli, 1993. DEM reconstruction in SAR Interferometry: Practical experiences with ERS-1 SAR data, Proc. IGARSS '93 - Better Understanding of Earth Environment, pp.1207-1209
  5. Flynn, T. J., 1997. Two-dimensional Phase Unwrapping with minimum weighted discontinuity, J. Opt. Soc. Am., 14(10): 2692-2701 https://doi.org/10.1364/JOSAA.14.002692
  6. Gabriel, A. K. and R. M. Goldstein, 1988. Crossed orbit interferometry: theory and experimental results from SIR-B, Int. J. of Remote Sensing, 9(5): 857-872 https://doi.org/10.1080/01431168808954901
  7. Ghiglia, D. C. and M. D. Pritt, 1998. Two-dimensional phase unwrapping: Theory, Algorithms, and Software, Wiley, New York
  8. Goldstein, R. M. and C. Werner, 1998. Radar interferogram filtering for geophysical application, Geophys. Res. Letters, 25(21): 4035-4038 https://doi.org/10.1029/1998GL900033
  9. Graham, L. C, 1974. Synthetic Interferometer Radar for Topographic Mapping, Proc. IEEE, 62(6): 63-768
  10. Hanssen, R. and R. Bamler, 1999. Evaluation of Interpolation Kernels for SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, 37(1): 318-321 https://doi.org/10.1109/36.739168
  11. Honikel, M., 1998. Improvement of InSAR DEM Accuracy Using Data and Sensor Fusion, Proc. IGARSS '98, pp.2348-2350
  12. Kampes, B. and S. Usai, 1999. Doris: The Delft object-oriented Radar Interferometric software, Proc. ITe 2nd ORS symposium, ITC, Enschede, The Netherlands
  13. Kwoh, L. K., E. C. Chang, W. C. A. Heng, and H. Lim, 1994. DTM generation from 35-days repeat pass ERS-1 interferometry, Proc. IGARSS '94, pp. 2288-2290
  14. Massonnet, D. and K .L. Feigt 1998. Radar interferometry and its application to changes in the earth's surface, Review of Geophysics, 36: 441-500 https://doi.org/10.1029/97RG03139
  15. Massonnet, D., H. Vadon, and M. Rossi, 1996. Reduction of need for Phase Unwrapping in Radar Interferometry, IEEE Transactions on Geoscience and Remote Sensing, 34(2): 489-497 https://doi.org/10.1109/36.485126
  16. Olmsted, C 1993. Alaska SAR Facility Scientific SAR User's Guide, pp. 17-32
  17. Rosen, P. A., S. Hensley, H. A. Zebker, F. H. Webb, and E. J. Fielding, 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry, J. Geophys. Res., 100(EOl): 23109- 23125
  18. Rufino, G., A. Moccia, and S. Esposito, 1998. DEM Generation by Means of ERS Tandem Data, IEEE Transactions on Geoscience and Remote Sensing, 36(6): 1905-1912 https://doi.org/10.1109/36.729362
  19. Scharroo, R. and P. N. A. M. Visser, 1998. Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res., 103: 8113-8127 https://doi.org/10.1029/97JC03179
  20. Seymour, M. S., 1999. Refining Low-quality Digital Elevation Models Using Synthetic Aperture Radar Interferometry, Doctoral thesis, the University of British Columbia
  21. Zebker, H. A. and M. Goldstein, 1986 Topographic Mapping From Interferometric Synthetic Aperture Radar Observations, J. Geophys. Res., 91: 4993-4999 https://doi.org/10.1029/JB091iB05p04993