Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.5.1.31

A Suggestion for Surface Reflectance ARD Building of High-Resolution Satellite Images and Its Application  

Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University)
Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.5_1, 2021 , pp. 1215-1227 More about this Journal
Abstract
Surface reflectance, as a product of the absolute atmospheric correction process of low-orbit satellite imagery, is the basic data required for accurate vegetation analysis. The Commission on Earth Observation Satellite (CEOS) has conducted research and guidance to produce analysis-ready data (ARD) on surface reflectance products for immediate use by users. However, this trend is still in the early stages of research dealing with ARD for high-resolution multispectral images such as KOMPSAT-3A and CAS-500, as it targets medium- to low-resolution satellite images. This study first summarizes the types of distribution of ARD data according to existing cases. The link between Open Data Cube (ODC), the cloud-based satellite image application platforms, and ARD data was also explained. As a result, we present practical ARD deployment steps for high-resolution satellite images and several types of application models in the conceptual level for high-resolution satellite images deployed in ODC and cloud environments. In addition, data pricing policies, accuracy quality issue, platform applicability, cloud environment issues, and international cooperation regarding the proposed implementation and application model were discussed. International organizations related to Earth observation satellites, such as Group on Earth Observations (GEO) and Committee on Earth Observation Satellites (CEOS), are continuing to develop system technologies and standards for the spread of ARD and ODC, and these achievements are expanding to the private sector. Therefore, a satellite-holder country looking for worldwide markets for satellite images must develop a strategy to respond to this international trend.
Keywords
Analysis Ready Data; Cloud computing; High resolution image; Open Data Cube;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, 2017. Google Earth Engine: Planetary-scale Geospatial Analysis for Everyone, Remote Sensing of Environment, 202: 18-27.   DOI
2 Holmes, C., 2018. Analysis Ready Data Defined Cloud Native Geoprocessing Part 2, https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815, Accessed on Mar. 25, 2021.
3 Kim, K. and K. Lee, 2020a. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Application of RadCalNet Baotou (BTCN) Data, Korean Journal of Remote Sensing, 36(6-2): 1509-1521 (in Korean with English abstract).   DOI
4 Kline, K., 2018. CEOS WGISS #46 USGS Agency Report, https://ceos.org/meetings/wgiss-46/, Accessed on Mar. 25, 2021.
5 Kumar, L. and O. Mutang, 2018. Google Earth Engine Applications since Inception: Usage, Trends, and Potential, Remote Sensing, 10: 1509.   DOI
6 Lee, K., K. Kim, S.-G. Lee, and Y.-S. Kim, 2019. Consideration Points for application of KOMPSAT Data to Open Data Cube, Journal of the Korean Association of Geographic Information Studies, 22(1): 62-77 (in Korean with English abstract).   DOI
7 Maso, J., A. Zabala, I. Serral, and X. Pons, 2019. A Portal Offering Standard Visualization and Analysis on Top of an Open Data Cube for Sub-National Regions: The Catalan Data Cube Example, Data, 4: 96.   DOI
8 Kim, K. and K. Lee, 2020b. A Validation Experiment of the Reflectance Products of KOMPSAT-3A Based on RadCalNet Data and Its Applicability to Vegetation Indexing, Remote Sensing, 12: 3971.   DOI
9 Kopp, S., P. Becker, A. Doshi, D.J. Wright, K. Zhang, and H. Xu, 2019. Achieving the Full Vision of Earth Observation Data Cubes, Data, 4: 94.   DOI
10 Kuester, M. and T. Ochoa, 2019. Improvements in Calibration, and Validation of the Absolute Radiometric Response of MAXAR Earth-Observing Sensors, https://calval.cr.usgs.gov/apps/sites/default/files/jacie/MicheleKuester.pdf, Accessed on Sept. 14, 2021.
11 Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract).   DOI
12 Lee, K. and K. Kim, 2020. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data, Korean Journal of Remote Sensing, 36(2-1): 167-178 (in Korean with English abstract).   DOI
13 Lee, K., K. Kim, S. Lee, and Y. Kim, 2020. Determination of the Normalized Difference Vegetation Index (NDVI) with Top-of-Canopy(TOC) Reflectance from a KOMPSAT-3A Image Using Orfeo ToolBox (OTB) Extension, International Journal of Geo-Information, 9(4): 257.   DOI
14 Pacific, F., 2020. Future of Remote Sensing and Data Quality, https://calval.cr.usgs.gov/apps/sites/default/files/jacie/2020-S5-Pacifici-Future_Remote_Sensing_Data_Quality.pdf. Accessed on June 12, 2021.
15 Giuliani, G., E. Egger, J. Italiano, C. Poussin, J.-P. Richard, and B. Chatenoux, 2020. Essential Variables for Environmental Monitoring: What Are the Possible Contributions of Earth Observation Data Cubes?, Data, 5: 100.   DOI
16 Bendini, H.N., L.M.G. Fonseca, M. Schwieder, P. Rufin, T.S. Korting, A. Koumrouyan, and P. Hostert, 2020. Combining Environmental and Landsat Analysis Ready data for Vegetation Mapping: A Case Study in the Brazilian Savanna Biome, Proc. of 2020 XXIV ISPRS Congress, Virtual Conference, Aug. 31-Sep. 2, vol. XLIII-B3-2020, pp. 953-960.
17 Frantz, D., 2019. FORCE - Landsat + Sentinel-2 Analysis Ready Data and Beyond, Remote Sensing, 11: 1124.   DOI
18 Giuliani, G., B. Chatenoux, A. De Bono, D. Rodila, J.-P. Richard, K. Allenbach, H. Dao, and P. Peduzzi, 2017. Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD), Big Earth Data, 1(1-2): 100-117.   DOI
19 Gomes, V.C.F., G.R. Queiroz, and K.R. Ferreira, 2020. An Overview of Platforms for Big Earth Observation Data Management and Analysis, Remote Sensing, 12: 1253   DOI
20 Gu, X., 2018. Satellite Earth Observation System and Spectrum Earth, http://ggim.un.org/unwgic/presentations/2.5_Gu_Xingfa.pdf, Accessed on Mar. 25, 2021.
21 Rizvi, S. R., B. Killough, A. Cherry, J. Rattz, A. Lubawy, and S. Gowda, 2020. Data Cube Application Algorithms for the United Nation Sustainable Development Goals (UN-SDGS), Proc. of 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Virtual Conference, Waikoloa, HI, USA, Sep. 26-Oct. 2, pp. 3399-3402.
22 Pinto, C.T., X. Jing and L. Leigh, 2020. Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using In Situ Measurements, Remote Sensing, 12: 2597.   DOI
23 Lee, K., S. Kang, K. Kim, and T.-B. Chae, 2017. Cloud-based Satellite Image Processing Service by Open Source Stack: A KARI Case, Korean Journal of Remote Sensing, 33(4): 339-350 (in Korean with English abstract).   DOI
24 Quang, N.H., V.A. Tuan, N.T.P. Hao, L.T.T. Hang, N.M. Hung, V.L. Anh, L.T.M. Phuong, and R. Carrie, 2019. Synthetic aperture radar and optical remote sensing image fusion for flood monitoring in the Vietnam lower Mekong basin: a prototype application for the Vietnam Open Data Cube, European Journal of Remote Sensing, 52(1): 599-612.   DOI
25 Truckenbrodt, J., T. Freemantle, C. Williams, T. Jones, D. Small, C. Dubois, C. Thiel, C. Rossi, A. Syriou, and G. Giuliani, 2019. Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube, Data, 4: 93.   DOI
26 Zhang, L., G. Li, C. Zhang, H. Yue, and X. Liao, 2019. Approach and Practice: Integrating Earth Observation Resources for Data Sharing in China GEOSS, International Journal of Digital Earth, 12(12): 1441-1456.   DOI
27 Kawasaki, A., P. Koudelova, K. Tamakawa, A. Kitamoto, E. Ikoma, K. Ikeuchi, R. Shibasaki, M. Kitsuregawa, and T. Koike, 2018. Data Integration and Analysis System (DIAS) as a Platform for Data and Model Integration: Cases in the Field of Water Resources Management and Disaster Risk Reduction, Data Science Journal, 17(29): 1-14.   DOI
28 Killough, B., A. Siqueira, and G. Dyke, 2020. Advancements in the Open Data cube and Analysis Ready Data - Past, Present and Future, Proc. of 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Virtual Conference, Waikoloa, HI, USA, Sep. 26-Oct. 2, pp. 3376-3378.
29 Ferreira, K.R., G.R. Queiroz, L. Vinhas, R.F.B. Marujo, R.E.O. Simoes, M.C.A. Picoli, G. Camara, R. Cartaxo, V.C.F. Gomes, I.A. Santos, A.H. Sanchez, J.S. Arcanjo, J.G. Fronza, C.A. Noronha, R.W. Costa, M.C. Zaglia, F. Zioti, T.S. Korting, A.R. Soares, M.E.D. Chaves, and L.M.G. Fonseca, 2020. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products, Remote Sensing, 12: 4033.
30 Geller, C., 2021. Introducing Maxar ARD: Accelerating the Pixel-to-Answer Workflow with Analysis-Ready Data, https://blog.maxar.com/earth-intelligence/2021/introducing-maxar-ard-accelerating-the-pixelto-answer-workflow-with-analysis-ready-data, Accessed on Mar. 25, 2021.
31 Sudmanns, M., D. Tiede, S. Lang, H. Bergstedt, G. Trost, H. Augustin, A. Baraldi, and T. Blaschke, 2020. Big Earth Data: Disruptive Changes in Earth Observation Data Management and Analysis?, International Journal of Digital Earth, 13(7): 832-850.   DOI
32 Voidrot, M.-F. and G. Percivall, G., 2020. OGC Geospatial Coverages Data Cube Community Practice, https://iopscience.iop.org/article/10.1088/1755-1315/509/1/012058/pdf, Accessed on Mar. 25, 2021.
33 Yao, X., Y. Liu, Q. Cao, J. Li, R. Huang, R. Woodcock, M. Paget, J. Wang, and G. Li, 2018. China Data Cube (CDC) for Big Earth Observation Data: Lessons Learned from the Design and Implementation, Proc. of International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, CN, Sept. 22, pp.1-3.
34 Kim, T.J., S.H. Kim, Y.H. Hwang, S.W. Jung, C.S. Ye, and Y.K. Han, 2021. A Study on the Planning of User-Friendly Image Products for Utilization of the National Base Map, Research Report 11-1613436-000271-01, National Land Satellite Center of National Geographic Information Institute (NGII), Suwon, Korea, pp. 12-159.
35 Zhong, B., A. Yang, Q. Liu, S. Wu, X. Shan, X. Mu, L. Hu, and J. Wu, 2021. Analysis Ready Data of the Chinese GaoFen Satellite Data, Remote Sensing, 13: 1709.   DOI
36 Baumann, P., 2017. The Datacube Manifesto, http://earthserver.eu/tech/datacube-manifesto, Accessed on Mar. 25, 2021.
37 Cheng, M.-C., C.-R. Chiou, B. Chen, C. Liu, H.-C. Lin, I-. Shih, C.-H. Chung, H.-Y. Lin, and C.-Y. Chou, 2019. Open Data Cube (ODC) in Taiwan: The Initiative and Protocol Development, Proc. of IGARSS 2019, Yokohama, JP, Aug. 1, pp. 5654-5657.
38 Dhu, T., G. Giuliani, J. Juarez, A. Kavvada, B. Killough, P. Merodio, S. Minchin, and S. Ramage, 2019. National Open Data Cubes and Their Contribution to Country-Level Development Policies and Practices, Data, 4: 144.
39 Giuliani, G., B. Chatenoux, A. Benvenuti, P. Lacroix, M. Santoro, and P. Mazzetti, 2020. Monitoring Land Degradation at National Level using Satellite Earth Observation Time-Series Data to Support SDG15 - Exploring the Potential of Data Cube, Big Earth Data, 4(1): 3-22.   DOI