• Title/Summary/Keyword: optional sampling theorem

Search Result 5, Processing Time 0.018 seconds

A MARTINGALE APPROACH TO A RUIN MODEL WITH SURPLUS FOLLOWING A COMPOUND POISSON PROCESS

  • Oh, Soo-Mi;Jeong, Mi-Ock;Lee, Eui-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.229-235
    • /
    • 2007
  • We consider a ruin model whose surplus process is formed by a compound Poisson process. If the level of surplus reaches V > 0, it is assumed that a certain amount of surplus is invested. In this paper, we apply the optional sampling theorem to the surplus process and obtain the expectation of period T, time from origin to the point where the level of surplus reaches either 0 or V. We also derive the total and average amount of surplus during T by establishing a backward differential equation.

Stationary distribution of the surplus process in a risk model with a continuous type investment

  • Cho, Yang Hyeon;Choi, Seung Kyoung;Lee, Eui Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.423-432
    • /
    • 2016
  • In this paper, we stochastically analyze the continuous time surplus process in a risk model which involves a continuous type investment. It is assumed that the investment of the surplus to other business is continuously made at a constant rate, while the surplus process stays over a given sufficient level. We obtain the stationary distribution of the surplus level and/or its moment generating function by forming martingales from the surplus process and applying the optional sampling theorem to the martingales and/or by establishing and solving an integro-differential equation for the distribution function of the surplus level.

A SHARP BOUND FOR ITO PROCESSES

  • Choi, Chang-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.713-725
    • /
    • 1998
  • Let X and Y be Ito processes with dX$_{s}$ = $\phi$$_{s}$dB$_{s}$$\psi$$_{s}$ds and dY$_{s}$ = (equation omitted)dB$_{s}$ + ξ$_{s}$ds. Burkholder obtained a sharp bound on the distribution of the maximal function of Y under the assumption that │Y$_{0}$$\leq$│X$_{0}$│,│ζ│$\leq$$\phi$│, │ξ│$\leq$$\psi$│ and that X is a nonnegative local submartingale. In this paper we consider a wider class of Ito processes, replace the assumption │ξ│$\leq$$\psi$│ by a more general one │ξ│$\leq$$\alpha$$\psi$│ , where a $\geq$ 0 is a constant, and get a weak-type inequality between X and the maximal function of Y. This inequality, being sharp for all a $\geq$ 0, extends the work by Burkholder.der.urkholder.der.

  • PDF

Further study on the risk model with a continuous type investment (연속적으로 투자가 이루어지는 보험상품 리스크 모형의 추가 연구)

  • Choi, Seung Kyoung;Lee, Eui Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Cho et al. (Communications for Statistical Applications and Methods, 23, 423-432, 2016) introduced a risk model with a continuous type investment and studied the stationary distribution of the surplus process. In this paper, we extend the earlier analysis by assuming that additional instant investment is made when the surplus process reaches a certain sufficient level. We obtain the explicit form of the stationary distribution of the surplus process. The case is shown as an example, when the amount of claim is exponentially distributed.

An optimal management policy for the surplus process with investments (재투자가 있는 잉여금 과정의 최적 운용정책)

  • Lim, Se-Jin;Choi, Seungkyoung;Lee, Eui-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1165-1172
    • /
    • 2016
  • In this paper, a surplus process with investments is introduced. Whenever the level of the surplus reaches a target value V > 0, amount S($0{\leq}S{\leq}V$) is invested into other business. After assigning three costs to the surplus process, a reward per unit amount of the investment, a penalty of the surplus being empty and the keeping (opportunity) cost per unit amount of the surplus per unit time, we obtain the long-run average cost per unit time to manage the surplus. We prove that there exists a unique value of S minimizing the long-run average cost per unit time for a given value of V, and also that there exists a unique value of V minimizing the long-run average cost per unit time for a given value of S. These two facts show that an optimal investment policy of the surplus exists when we manage the surplus in the long-run.