Abstract
In this paper, a surplus process with investments is introduced. Whenever the level of the surplus reaches a target value V > 0, amount S($0{\leq}S{\leq}V$) is invested into other business. After assigning three costs to the surplus process, a reward per unit amount of the investment, a penalty of the surplus being empty and the keeping (opportunity) cost per unit amount of the surplus per unit time, we obtain the long-run average cost per unit time to manage the surplus. We prove that there exists a unique value of S minimizing the long-run average cost per unit time for a given value of V, and also that there exists a unique value of V minimizing the long-run average cost per unit time for a given value of S. These two facts show that an optimal investment policy of the surplus exists when we manage the surplus in the long-run.
보험 상품의 잉여금은 보험료 수입에 의해 증가하며 고객이 보험료를 청구할 때 감소한다. 보험회사는 잉여금이 충분히 많아지면 잉여금의 일부를 재투자하는 것을 통해 이익을 창출한다. 본 연구에서는 보험료 수입과 청구를 고려하여 잉여금의 수준을 나타낸 기존의 잉여금 모형을 소개하고 기존의 모형에 재투자의 개념과 운용비용을 도입하여 장시간에 걸친 단위시간당 평균비용을 구하고, 이를 최소화하는 재투자 수준과 목표 잉여금을 구한다.